

КАТАЛОГ ПРОДУКЦИИ

По вопросам продаж и поддержки обращайтесь:

Архангельск +7 (8182) 45-71-35 Астана +7 (7172) 69-68-15 Астрахань +7 (8512) 99-46-80 Барнаул +7 (3852) 37-96-76 Белгород +7 (4722) 20-58-80 Брянск +7 (4832) 32-17-25 Владивосток +7 (4232) 49-26-85 Владимир +7 (4922) 49-51-33 Волгоград +7 (8442) 45-94-42 Воронеж +7 (4732) 12-26-70 Екатеринбург +7 (343) 302-14-75 Иваново +7 (4932) 70-02-95 Ижевск +7 (3412) 20-90-75 Иркутск +7 (3952) 56-24-09 Йошкар-Ола +7 (8362) 38-66-61 Казань +7 (843) 207-19-05

Калининград +7 (4012) 72-21-36 Калуга +7 (4842) 33-35-03 Кемерово +7 (3842) 21-56-70 Киров +7 (8332) 20-58-70 Краснодар +7 (861) 238-86-59 Красноярск +7 (391) 989-82-67 Курск +7 (4712) 23-80-45 Липецк +7 (4742) 20-01-75 Магнитогорск +7 (3519) 51-02-81 Москва +7 (499) 404-24-72 Мурманск +7 (8152) 65-52-70 Наб. Челны +7 (8552) 91-01-32 Ниж. Новгород +7 (831) 200-34-65 Нижневартовск +7 (3466) 48-22-23 Нижнекамск +7 (8555) 24-47-85

Новороссийск +7 (8617) 30-82-64 Новосибирск +7 (383) 235-95-48 Омск +7 (381) 299-16-70 Орел +7 (4862) 22-23-86 Оренбург +7 (3532) 48-64-35 Пенза +7 (8412) 23-52-98 Первоуральск +7 (3439) 26-01-18 Пермь +7 (342) 233-81-65 Ростов-на-Дону +7 (863) 309-14-65 Рязань +7 (4912) 77-61-95 Самара +7 (846) 219-28-25 Санкт-Петербург +7 (812) 660-57-09 Саранск +7 (8342) 22-95-16 Саратов +7 (845) 239-86-35 Смоленск +7 (4812) 51-55-32 Сочи +7 (862) 279-22-65 Ставрополь +7 (8652) 57-76-63 Сургут +7 (3462) 77-96-35 Сызрань +7 (8464) 33-50-64 Сыктывкар +7 (8212) 28-83-02 Тверь +7 (4822) 39-50-56 Томск +7 (3822) 48-95-05 Тула +7 (4872) 44-05-30 Тюмень +7 (3452) 56-94-75 Ульяновск +7 (8422) 42-51-95 Уфа +7 (347) 258-82-65 Хабаровск +7 (421) 292-95-69 Чебоксары +7 (8352) 28-50-89 Челябинск +7 (351) 277-89-65 Череповец +7 (8202) 49-07-18 Ярославль +7 (4852) 67-02-35

сайт: rust.pro-solution.ru | эл. почта: rst@pro-solution.ru телефон: 8 800 511 88 70

AO «PYCT-95»

АО «РУСТ-95» – производственное предприятие, занимающее ведущие позиции на российском рынке высококачественной запорной и регулирующей трубопроводной арматуры. АО «РУСТ-95» — крупнейший отечественный производитель, осуществляющий полный цикл производства: от разработки и изготовления до постгарантийного сервисного обслуживания. На сегодняшний день АО «РУСТ-95» располагает высоким внутренним производственным потенциалом: завод площадью 12,5 га, на котором располагаются литейное, гальваническое, механообрабатывающие и сборочные производства, необходимые вспомогательные службы, система логистики, конструкторское бюро и сервисное подразделение.

Основными потребителями продукции АО «РУСТ-95» являются нефте- и газодобывающие, нефте- и газоперерабатывающие, нефтегазохимические, химические предприятия, различные производства металлургической, газовой и атомной промышленности не только в Российской Федерации, но и в странах СНГ, Балтии, дальнего зарубежья (Болгария, Вьетнам, Иран, Венгрия, Сирия).

В течение ряда лет АО «РУСТ-95» — утвержденный и рекомендованный поставщик оборудования для таких лидеров отечественной и мировой промышленности, как «Газпром», «Роснефть», «Сургутнефтегаз», «Новатэк», «Лукойл», «Нижнекамскнефтехим», НПО «Сатурн» и многих других.

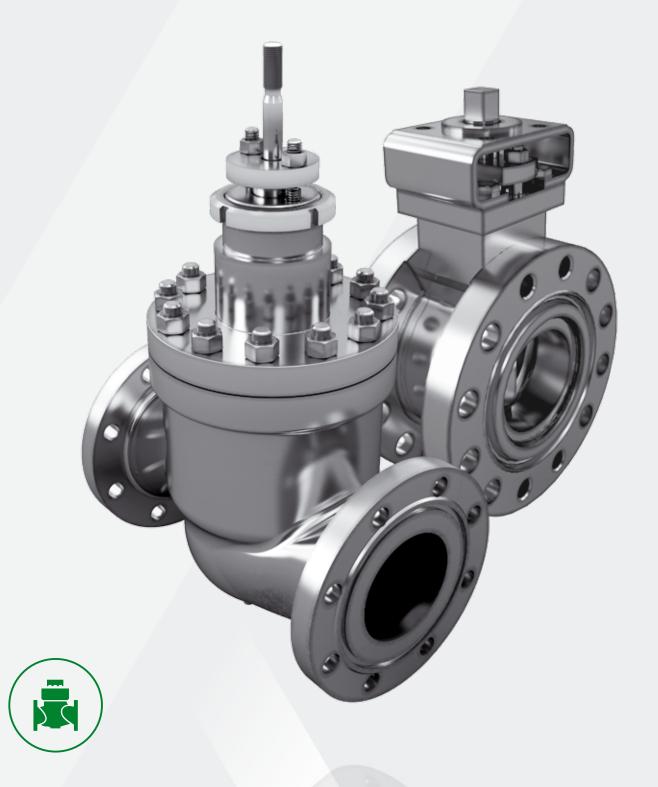
Оборудование АО «РУСТ-95» поставляется для обустройства таких объектов, как: «Ямал-СПГ», «Запсибнефтехим», реконструкция Калининградского ПХГ, газопроводы «Сила Сибири», «Северный поток», «Северный поток 2», «Голубой поток», нефтепроводы «Дружба», «БТС», «КТК», «ВСТО» и многие другие.

Оборудование АО «РУСТ-95» сертифицировано на соответствие требованиям технических регламентов ЕАС и Европейского сертификата качества (СЕ).

Система менеджмента качества предприятия сертифицирована на соответствие требованиям ГОСТ Р ИСО 9001-2015.

Оборудование АО «РУСТ-95» внесено в Реестр трубопроводной арматуры, технические условия которой соответствуют техническим требованиям ОАО «Газпром».

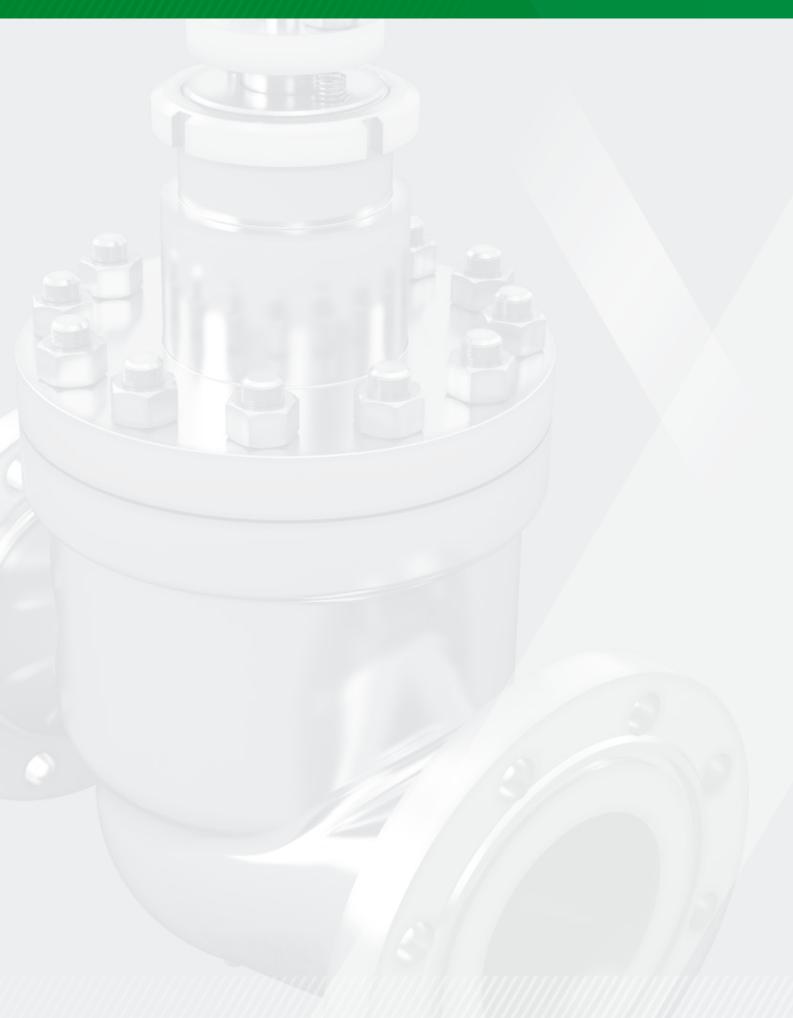
Получено заключение ООО «Газпром ВНИИГАЗ» о возможности применения оборудования в сероводородсодержащих средах, а также сертификат на соответствие требованиям Российского морского регистра судоходства.



СОДЕРЖАНИЕ

ЗАПОРНАЯ И РЕГУЛИРУЮЩАЯ АРМАТУРА

Клапаны РУСТ® серий 300, 400, 500	7
Клапан запорный с электромагнитным приводом серии ЗК-М	19
Клапан микрорасхода РУСТ® серии 411	23
Клапан РУСТ® с керамическими элементами серии 415	27
Кран шаровой РУСТ® серии 600	35
Задвижка с парообогревом РУСТ® серии 710	41
Затвор дисковый РУСТ® серии 800	45
Клапаны сегментные РУСТ серии 200	49
Клапан осевой РУСТ® серии 900	55
ЗАЩИТНАЯ АРМАТУРА	
Клапан обратный РУСТ® серии 960	65
РЕГУЛЯТОРЫ ДАВЛЕНИЯ	
Регулятор давления серии РД 110 и 120	71
ФИЛЬТРЫ СЕТЧАТЫЕ	
Фильтр сетчатый Ү-образного типа серии ФС	79
Фильтр сетчатый конусного типа серии ФС	83
Фильтр сетчатый Т-образного типа серии ФС	87
ПРИБОРЫ	
Электропневматический Клапан ЭПК ЭПП 300 взрывозащищенный	93
Редуктор давления с фильтром РДФ 300	99
Концевой выключатель двухпозиционный КВД 610d и 610i взрывозащищенный	101
Взрывозащищенные кабельные вводы ВКВ	105
БЛОЧНЫЕ СИСТЕМЫ УПРАВЛЕНИЯ	
Система регулируемой подачи ингибитора СРПИ серии РУСТ® 250, 300	109



ЗАПОРНАЯ И РЕГУЛИРУЮЩАЯ АРМАТУРА

СЕРИИ: 300, 400, 500, 3К-М, 411, 415, 600, 710, 800, 900

КЛАПАНЫ РУСТ® СЕРИЙ 300, 400, 500

Запорные, запорно-регулирующие и регулирующие клапаны РУСТ® серий 300, 400, 500 предназначены для регулирования и/или отсечки потоков жидких и газообразных сред.

ПРИМЕНЕНИЕ

Газовая, нефтяная, химическая, пищевая, энергетическая, металлургическая и другие промышленности; трубопроводный транспорт.

DN – диаметр условного прохода, мм от 15 до 400

PN – условное давление, МПа

от 1,6 до 40

специальное исполнение: до 25, до 40

Т° – температура рабочей среды, °С

от -60 до +420

специальное исполнение: от -196 до +630

ПРЕИМУЩЕСТВА ПРИМЕНЕНИЯ КЛАПАНОВ РУСТ® СЕРИЙ 300, 400, 500

Благодаря сбалансированной по давлению конструкции плунжера клапана для приведения его в действие требуются достаточно незначительные по величине усилия, даже при наличии высокого перепада давления на клапане. Это позволяет использовать для клапанов 300, 400, 500-й серий приводы малой мощности.

⊘ Возможность осуществления быстрой замены внутренних деталей без демонтажа клапана с трубопровода

Внутренние детали клапана объединены в отдельный модуль – запорно-регулирующий узел, фиксируемый в корпусе с помощью крышки и прокладок. Благодаря этому для осуществления ремонтно-профилактических работ достаточно снять крышку с клапана и заменить запорно-регулирующий узел.

Защита корпуса от износа

Достигается за счет того, что процесс дросселирования происходит внутри запорно-регулирующего узла и поверхность корпуса не подвергается воздействию высокоскоростного потока.

Ремонтопригодность

Внутренние детали клапана имеют простые формы и могут быть отремонтированы с применением обычного металлообрабатывающего оборудования.

Высокая пропускная способность

Корпуса спроектированы таким образом, чтобы обеспечивать полнопроходность запорных клапанов и высокую пропускную способность регулирующих.

ПРИНЦИП ДЕЙСТВИЯ КЛАПАНОВ РУСТ® СЕРИЙ 300, 400, 500 СБАЛАНСИРОВАННОЙ КОНСТРУКЦИИ

В основе конструкции клапанов сериЙ 300, 400 и 500 лежит модульный принцип (рис. 1). Внутренние детали клапана объединены в отдельный модуль – запорно-регулирующий узел, фиксируемый в корпусе с помощью крышки и прокладок. Запорно-регулирующий узел состоит из втулки, седла и плунжера. В сбалансированной конструкции плунжер клапана двигается вдоль оси узла, осуществляя перекрытие проходного сечения во втулке, перфорированной отверстиями определенной формы. Форма и размер отверстий определяют величину пропускной способности и пропускную характеристику клапана.

Плунжер и перфорированная втулка выполняются из специальных материалов, исключающих их заклинивание. Перемещение плунжера клапана осуществляется за счет штока, выведенного наружу через сальник в верхней части крышки клапана. Сальниковый узел состоит из шевронных манжет и пружины, выполняющей активирующую и компенсирующую функцию.

Поток рабочей среды, двигаясь по S-образному корпусу, проходит через запорно-регулирующий узел, в котором за счет перемещения плунжера осуществляется регулирование проходного сечения и соответственно расхода. При направлении подачи потока внутрь втулки струи, выходящие через отверстия, сталкиваются и разрушаются в её центре, таким образом исключается эрозионное воздействие потока на корпус, а все негативные процессы происходят внутри запорно-регулирующего узла.



Рис. 1

ПРИНЦИП РАЗГРУЗКИ КЛАПАНОВ РУСТ® СЕРИЙ 300, 400, 500 СБАЛАНСИРОВАННОЙ КОНСТРУКЦИИ

Конструкция плунжера является разгруженной (сбалансированной) по давлению (рис. 2). За счет разгрузочных каналов на торцевые поверхности плунжера действует одинаковое давление, независимо от направления подачи среды в клапане. При этом переток в или/из полости сверху плунжера устраняется за счет установки радиального уплотнения между втулкой и плунжером, как правило, это манжета из фторопластовых композиций.

При перемещении плунжера привод клапана преодолевает усилия только от трения в сальниковом узле и от трения радиальных уплотнений плунжера, которые обычно составляют лишь незначительную часть от усилий для клапанов несбалансированных конструкций.

Рис. 2

При прямом направлении перепада давления

- давление на входе в клапан;
- давление на выходе из клапана

При обратном направлении перепада давления

- давление на выходе из клапана;
- – давление на входе в клапан

ПРИНЦИП ДЕЙСТВИЯ КЛАПАНОВ РУСТ® СЕРИЙ 300, 400, 500 ПЛУНЖЕРНОЙ КОНСТРУКЦИИ

Принцип действия клапанов плунжерной конструкции такой же, как для клапанов сбалансированной конструкции, и отличается лишь работой запорно-регулирующего узла. Здесь плунжер клапана при перемещении осуществляет перекрытие проходного сечения в седле. Форма и размер плунжера определяют величину пропускной способности и пропускную характеристику клапана (рис. 3).

Отверстия во втулке выполняются такого размера, который не создает значительного сопротивления прохождению потока. Также во втулке устроена мощная направляющая для плунжера, обеспечивающая его стабильное положение в режиме регулирования.

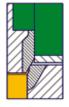
Плунжерная конструкция клапана предпочтительна при работе с загрязненными или вязкими средами, однако, не являясь сбалансированной по давлению, требует применения более мощных приводов.

Рис. 3

ИСПОЛНЕНИЯ ОСНОВНОГО УПЛОТНЕНИЯ КЛАПАНОВ РУСТ® СЕРИЙ 300, 400, 500

«МЕТАЛЛ-МЕТАЛЛ»

Уплотнение «металл-металл» используется:


- для регулирующих клапанов с обеспечением III–IV класса герметичности;
- для запорно-регулирующих клапанов с дополнительной пришлифовкой уплотнительных поверхностей, с обеспечением класса А для жидких продуктов или класса В для газовых сред.

Металлические поверхности выполняются из твердых и эрозионностойких материалов, в т.ч. с применением наплавки стеллита и других спецсплавов.

«МЯГКОЕ УПЛОТНЕНИЕ»

«Мягкое» уплотнение применяется для получения герметичности клапана по классу А. Такую герметичность обеспечивает установка между втулкой и седлом вставки из неметаллических материалов: полиуретана, фторопласта, полиамида и др.

В условиях дросселирования вставка находится вне зоны воздействия скоростного потока. При необходимости вставка может быть легко заменена.

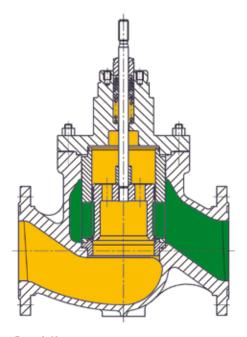


Рис. 4. Исполнения основного уплотнения клапанов РУСТ® серий 300, 400, 500

ВЫСОКОТЕМПЕРАТУРНОЕ ИСПОЛНЕНИЕ КЛАПАНОВ РУСТ® СЕРИЙ 300, 400, 500

Высокотемпературное исполнение отличается от обычного устройством крышки клапана и внутренним устройством запорно-регулирующих узлов сбалансированной конструкции.

Крышка для высоких температур выполняется с удлиненной верхней частью, чтобы вынести сальниковый узел из высокотемпературной зоны. Такое решение позволяет использовать стандартные материалы для сальниковых уплотнений на основе фторопласта (рис. 5).

Рис. 5

Устройство регулирующих клапанов отличается за счет установки между плунжером и втулкой графитовых радиальных уплотнений, стойких к высокой температуре. Такая конструкция может работать как в прямом, так и в обратном направлении потока. Герметичность в этом случае не превышает 4-й класс за счет протечки через поршневые уплотнения (рис. 6).

Рис. 6

Конструкция запорных и запорно-регулирующих клапанов построена по пилотному принципу. В этом случае направление потока устанавливается только внутрь втулки. В плунжере выполнен пилотный клапан, который при открытии разгружает плунжер клапана, выравнивая давления сверху и снизу плунжера. При закрытии клапана закрывается и пилот, в этом случае сверху плунжера накапливается входное давление, увеличивая силу прижатия клапана к седлу и обеспечивая высокую герметичность (рис. 7).

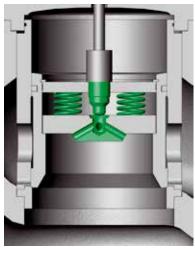
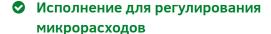


Рис. 7

СПЕЦИАЛЬНЫЕ ИСПОЛНЕНИЯ КЛАПАНОВ РУСТ® СЕРИЙ 300, 400, 500

Для устранения кавитации при эксплуатации на жидких продуктах, а также для уменьшения уровня шума при работе с газовыми средами применяется перфорация втулки запорно-регулирующего узла клапана мелкими отверстиями. Разбивание потока на тонкие струйки значительно ускоряет диссипацию энергии при дросселировании, за счет чего достигаются антишумовые и антикавитационные свойства клапана (рис. 8).


Применяется при регулировании потоков химически агрессивных и/или содержащих абразивные включения сред, когда для внутренних деталей клапана необходимо использование специальных материалов, стойких к высокоскоростному воздействию конкретной среды. Такими материалами могут быть керамика, твердый сплав, стали и сплавы со специальными свойствами (Hastelloy, Nitronic, титан и т. п.) (рис. 9).

Применяется при регулировании сред, содержащих сероводород, когда для деталей клапана необходимо использование материалов в соответствии со стандартами NACE и др.

Для сред с криогенной температурой применяется удлиненная крышка и материалы, работоспособные при данных температурах.

В случае регулирования очень малых расходов запорно-регулирующий узел клапана выполняется оригинальной запатентованной конструкцией (подробная информация в разделе «Клапаны микрорасхода»).

У Исполнение с сильфонным уплотнением штока

Применяется в случае, когда недопустимо попадание в окружающую среду даже небольшого количества рабочей среды из-за неабсолютной герметичности сальникового узла (рис. 10).

Исполнение с рубашкой обогрева корпуса

Применяется для вязких или кристаллизующихся сред. В этом случае к корпусу клапана приваривается оболочка, позволяющая подавать в себя теплоноситель с давлением до 0,6 МПа (рис. 11).

Рис. 8

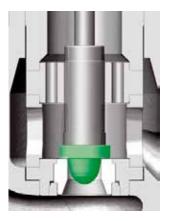


Рис. 9

Рис. 10

Рис. 11

ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ КЛАПАНОВ РУСТ® СЕРИЙ 300, 400, 500

Таблица 1

Наименование параметра	Значение
Условный диаметр, DN, мм	15; 20; 25; 32; 40; 50; 65; 80; 100; 125; 150; 200; 250; 300; 400
Условное давление, PN, МПа	1,6; 2,5; 4,0; 6,3; 10; 16; 25*; 40*
Рабочие среды	Газообразные и жидкие продукты, в т.ч. агрессивные и содержащие твердые включения; а также вязкие и кристаллизующиеся среды
Температура рабочей среды, °С	Стандартное исполнение: от -60 до $+420$ °C Специальные исполнения: от -196 до $+630$ °C
Климатическое исполнение (температура окружающей среды, °C)	У (-40 +70) УХЛ(1) (-60 +70)
Присоединение к трубопроводу	Фланцевое по ГОСТ, ANSI B16.5* Приварное* Муфтовое, для клапанов с номинальным диаметром не более 25 мм*
Тип устанавливаемых приводов	Пневматические, с боковым или верхним дублерами или без дублера Ручные с фиксацией в промежуточных положениях Электрические (AUMA, Стерх, Гусар, МЭПК) фиксированные, с функцией НО/НЗ
Материал корпуса	Стали: 20ГЛ, 20ХНЗЛ, 20ГМЛ, 20Х5МФЛ, 20ХМФЛ, 12Х18Н9ТЛ, 12Х18Н12МЗТЛ, 07Х20Н25МЗД2ТЛ Сплавы: 06ХН28МДТЛ*, H65МФЛ*, XH65МВЛ (Hastelloy C, B)*
Материалы внутренних деталей	Стали: 20X13, ЭП410, ЭП222, 12X18H10T, 10X17H13M3T, ЭИ943, Nitronic-60, 17-4PH Сплавы: XH65MB, BT-3-1, Стеллит
Тип клапанов	Регулирующие Запорно-регулирующие Запорные (отсечные)
Специальные исполнения	Кавитационностойкое; антишумовое; эрозионностойкое; сероводородостойкое; с сильфоном; с рубашкой обогрева; криогенное; для микрорасходов
Тип уплотнения	«Металл-металл» «Мягкое уплотнение»
Классы герметичности	По ГОСТ 9544-2015
Характеристика регулирования	Линейная Равнопроцентная
Направление потока	Одностороннее Двухстороннее
Минимальное время срабатывания с пневматическим приводом, сек.	
Запорные клапан Регулирующие и запорно-регулирующие клапан	

^{*}специальное исполнение, согласовывается при заказе

ПРОПУСКНАЯ СПОСОБНОСТЬ КЛАПАНОВ РУСТ® СЕРИЙ 300, 400, 500

	Таолица 2
Номинальный диаметр, DN, мм	Пропускная способность Kvy (м³/ч) для клапанов регулирующих и запорно-регулирующих
15	0,0008 – 4
20	0,0008 – 8
25	0,0008 – 12
32	4,0 - 20,01
40	6,3 – 32,01
50	10,0 – 50,0 ¹
65	10,0 – 80,01
80	25 – 125¹
100	40 – 200¹
125	63 – 250¹
150	80 - 400¹
200	125 – 630¹
250	200 – 1000¹
300	320 – 1600¹
400	500 – 2500¹

¹ Возможно исполнение с меньшей пропускной способностью

ЗАПОРНАЯ И РЕГУЛИРУЮЩАЯ АРМАТУРА

МАССЫ КЛАПАНОВ РУСТ® СЕРИЙ 300, 400, 500

			Массы, кг (Т°225 °С / 22			
DN, MM	PN, МПа	с пневматическим приводом серии 310-1	с ручным приводом серии 310-3	•	оприводом, сери	
	4.6.2.5.4.0			AUMA ¹	МЭПК ²	Гусар
15	1,6; 2,5; 4,0	15 / 18	19 / 22	58 / 61	26 / 29	37 / 40
	6,3; 10; 16	20 / 22	24 / 26	63 / 65	31 / 33	42 / 44
20	1,6; 2,5; 4,0	18 / 20	21 / 23	60 / 62	28 / 30	39 / 4
	6,3; 10; 16	22 / 25	26 / 29	65 / 68	33/ 36	44 / 47
0.5	1,6; 2,5; 4,0	19 / 21	22 / 24	61 / 63	29 / 31	40 / 42
25	6,3	23 / 26	27 / 30	66 / 69	34 / 37	45 / 48
	10; 16	23 / 26	27 / 30	66 / 69	34 / 37	45 / 48
	1,6; 2,5; 4,0	29 / 34	28 / 33	66 / 71	34 / 39	45 / 50
32	6,3	34 / 39	33 / 38	70 / 75	38 / 43	49 / 54
	10; 16	38 / 43	37 / 42	75 / 80	43 / 48	54 / 59
	1,6; 2,5; 4,0	32 / 38	31 / 37	68 / 74	37/ 43	48 / 54
40	6,3	39 / 44	40 / 45	76 / 81	44 / 49	54 / 59
	10; 16	54 / 60	53 / 59	90 / 96	59 / 65	70 / 76
	1,6; 2,5; 4,0	37 / 42	36 / 41	74 / 79	41 / 46	53 / 58
50	6,3	46 / 51	45 / 50	83 / 88	51 / 56	61 / 66
	10; 16	65 / 71	64 / 70	101/ 107	70 / 76	81 / 87
65	1,6; 2,5; 4,0	58 / 65	50 / 57	85 / 92	54 / 61	64 / 71
-	6,3; 10; 16	114 / 121	106 / 113	141 / 148	109 / 116	121 / 12
	1,6; 2,5; 4,0	72 / 82	64 / 74	100 / 110	68 / 78	79 / 89
80	6,3	80 / 90	72 / 82	107/ 117	75 / 85	86 / 96
	10; 16	103 / 113	105 / 115	140 / 150	108 / 118	119/ 12
	1,6; 2,5; 4,0	108 / 116	84 / 92	118 / 126	88 / 96	98 / 10
100	6,3	122 / 131	99 / 110	134 / 145	102 / 113	113 / 12
	10; 16	196/ 179	145 / 155	180 / 190	148 / 158	159 / 16
125	16; 25; 4,0	132 / 141	108 / 117	142 / 151	112 / 121	138 / 14
123	6,3	148 / 157	124 / 133	158 / 167	128 / 137	177 / 18
	1,6; 2,5; 4,0	177 / 187	154 / 164	189 / 199	156 / 166	167 / 17
150	6,3	210 / 221	187 / 198	221 / 232	189 / 200	200 / 21
	10; 16	311 / 321	289 / 299	232 / 333	290 / 300	302 / 31
	1,6; 2,5	249 / 260	226 / 237	261 / 272	229 / 240	240 / 25
200	6,3	260 / 271	272 / 283	283 / 294	251 / 262	262 / 27
	10; 16	613 / 624	550 / 561	575 / 286	551 / 562	554 / 56
	1,6; 2,5	506 / 521	443 / 458	458 / 473	436 / 451	447 / 46
	4,0	598 / 616	535 / 553	550 / 568	528 / 546	539 / 55
250	6,3	650 / 670	587 / 607	602 / 622	580 / 600	591 / 61
	10	710 / 733	647 / 670	622 / 685	640 / 663	651 / 67
	16	860 / 883	797/ 820	812 / 835	810 / 833	801 / 82
	1,6; 2,5	706 / 721	697 / 712	713 / 728	690 / 705	702 / 71
200	4,0	803 / 820	794 / 811	810 / 827	787 / 804	799 / 81
300	6,3	940 / 960	931 / 951	947 / 967	924 / 944	936 / 95
	10	1107/1127	1098/1118	1114/1134	1111/1131	1103/11
	1,6; 2,5	506 / 521	841 / 862	857 / 878	834 / 855	846 / 86
400	4,0	906 / 932	897 / 923	913 / 939	890 / 916	902 / 92
	6,3	1078/1104	1069/1092	1082/1111	1082/1108	1074/11

¹ Электроприво∂ AUMA SAREx 07.1/AMEx01.1/LE 12.1

² Электропривод МЭПК 6300 - II BT4 - 01 до DN250 PN63, свыше DN 250 PN100 электропривод МЭП - 25000 - II BT4

ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ КЛАПАНОВ РУСТ $^{\circ}$ СЕРИЙ 300, 400, 500 С МЕМБРАННЫМИ И РУЧНЫМИ ПРИВОДАМИ

							T = 2	25°C			T = 4	120°C	Таблица 4
DN, MM	PN, МПа	L1, мм	D1, мм	D2, мм	L2, мм	Н1, мм	Н2, мм	Н3, мм	Н4, мм	Н1, мм	Н2, мм	Н3, мм	Н4, мм
	1,6 – 4	130	95			480	685	311	494	685	890	516	699
15	6,3 – 16	180	105	250	277	520	725	351	534	725	960	556	739
	1,6 – 4	150	105			480	685	311	494	685	890	516	699
20	6,3 – 16	190	125	250	277	580	725	351	534	725	930	556	739
	1,6 – 4	160	115			495	700	326	509	700	907	531	714
25	6,3 – 16	230	135	250	277	497	702	328	511	702	909	533	716
	1,6 – 4	180	135			625	834	386	530	833	1042	594	738
32	6,3 – 16	260	150	310	277	613	822	374	518	821	1030	582	726
	1,6 – 4	200	145			662	871	423	567	870	1079	631	775
40	6,3			310	277	630	839	391	535	838	1047	599	743
	10 – 16	260	165			642	851	403	547	850	1059	611	755
	1,6 – 4	230	160			631	840	392	536	839	1048	600	744
50	6,3		175	310	277	616	825	377	521	824	1033	585	729
	10 – 16	300	195			643	852	405	548	851	1060	613	756
	1,6 – 4	290	180		357	792	1016	568	622	1052	1276	828	882
65	6,3	240	200	380		052	1077	620	602	4440	4427	000	0.42
	10 – 16	340	220			853	1077	629	683	1113	1137	889	943
	1,6 – 4	310	195		380 357	848	1057	468	634	1158	1382	778	944
80	6,3	380	210	380		836	1045	456	622	1136	1360	756	922
	10 – 16	300	230			850	1059	470	636	1150	1374	770	936
	1,6	350	215			1070	1324	665	732	1390	1644	985	1052
100	2,5 – 4	330	230	470	357	1070	1324	003	752	1330	1044	303	1032
100	6,3	430	250	470	337	1063	1317	658	725	1368	1622	963	1030
	10 – 16	430	265			1062	1316	657	724	1382	1636	977	1044
	1,6	400	245			1100	1354	695	762	1460	1714	1055	1122
125	2,5 – 4	400	270	470	357	1100	1334	093	702	1400	1714	1000	1122
	6,3	500	295			1092	1346	657	754	1452	1706	1047	1114
	1,6	480	280			1110	1364	705	772	1470	1715	1065	1132
150	2,5 – 4	700	300	470	357	1110	1304	703	112	14/0	1/15	1065	1132
150	6,3	550	340	470	337	1088	1342	683	750	1453	1698	1048	1115
	10 – 16	330	350			1103	1357	698	765	1468	1713	1063	1130
	1,6		335										
200	2,5	600	360	470	357	1167	1421	410	829	1554	1799	1149	1216
_50	4		375										
	6,3	650	405	450	370	1083	1328	670	824	1549	1794	1057	1211

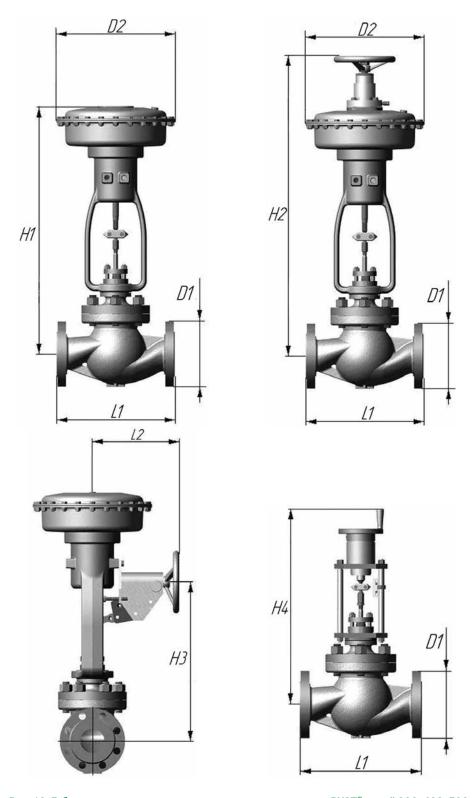
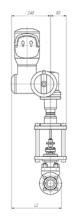



Рис. 12. Габаритные и присоединительные размеры клапанов РУСТ® серий 300, 400, 500 с мембранными и ручными приводами

ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ КЛАПАНОВ РУСТ® СЕРИЙ 300, 400, 500 С ПОРШНЕВЫМИ ПНЕВМАТИЧЕСКИМИ И ЭЛЕКТРОПРИВОДАМИ

DN		DN MEI-	14	D4	D2	D2			T= 225 °C			T= 420 °C																								
DN,	ММ	PN, МПа	L1, мм	D1, мм	D2, мм	D3, мм	L2, мм	Н1, мм	Н2, мм	Н3, мм	Н1, мм	H2	Н3, мм																							
	200	10-16	650	430	450	494		1240	255	675	1625	255	1062																							
		1,6		405		516			278			278																								
0		2,5	730	425		310		1395	276	825	1845	270	1275																							
ПП400	250	4		445	450	554	370		292			292																								
	250	6,3	780	470	570 610	570			295			295																								
		10	930 500				00	F00	610	610		1400	311	830	1850	311	1280																			
		16	950	500		610	0		311			311																								
		1,6	850 460	460	550 628	550	624	624	1445	332	875	2045	332	1475																						
		2,5	830	485				1443	332	673	2043	332	1473																							
	300	4	980	510			368		324			324																								
Q		6,3	1010	530		650																									1563	389	888	2165	389	1490
ПП500		10	1100	585		585			369			303																								
		1,6	1100	580								433	1713																							
	400	2,5	1050	610	550	660	368	1738	433	1063	2388																									
	400	4	1210	655	330	000	300		433	433																										
		6,3	1220	670				1744		1069	-	-	-																							

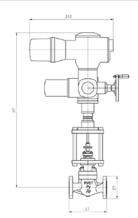


Рис. 13. Габаритные и присоединительные размеры клапанов РУСТ® серий 300, 400, 500 с электроприводом AUMA

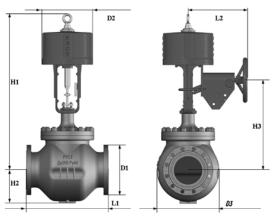


Рис. 14. Габаритные и присоединительные размеры клапанов РУСТ® серий 300, 400, 500 с поршневым пневматическим приводом

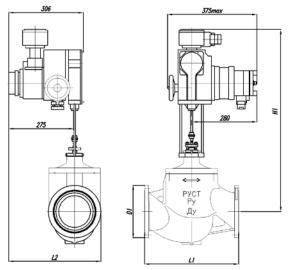


Рис. 15. Габаритные и присоединительные размеры клапанов РУСТ® серий 300, 400, 500 с электроприводом МЭПК

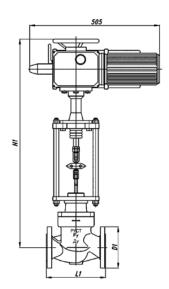


Рис. 16. Габаритные и присоединительные размеры клапанов РУСТ® серий 300, 400, 500 с электроприводом Стерх

ЗАПОРНАЯ И РЕГУЛИРУЮЩАЯ АРМАТУРА

Таблица 5 (продолжение)

15	715 907 743 937 716 968 743 937 716 922 725 919 788 996 777 985 792 1000 805 1013 794 1004 805 1015
Table Tabl	225 °C T=420 °C 715 907 743 937 716 968 743 937 716 922 725 919 788 996 777 985 792 1000 805 1013 794 1004 805 1015
15	715 907 743 937 716 968 743 937 716 922 725 919 788 996 777 985 792 1000 805 1013 794 1004 805 1015
1.6	743 937 716 968 743 937 716 922 725 919 788 996 777 985 792 1000 805 1013 794 1004 805 1015
1,6-4 150 105 328 602 794 293 959 1151 989 1181 126 108 125 338 631 825 303 988 1182 1018 1212 108 125 1038 125 1018 1212 108 125 1038 125 1018 1212 108 125 1038 125 1018 1212 108 125 1038 125 1018 1212 108 125 1038 126 1230 135 343 613 807 308 970 1164 1000 1194 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1	716 968 743 937 716 922 725 919 788 996 777 985 792 1000 805 1013 794 1004 805 1015
1,6-4 160 115 333 631 825 303 988 1182 1018 1212 1018 1212 1018 1212 1018 1212 1018 1212 1018 1212 1018 1212 1018 1212 1018 1212 1018 1212 1018 1212 1018 1212 1018 1212 1018 1212 1018 1212 1018 1212 1018 1212 1018 1214 1010 1194 1194	716 922 725 919 788 996 777 985 792 1000 805 1013 794 1004 805 1015
1,6-4 180 135 343 613 807 308 970 1164 1000 1194 1000 1200 1200 1000	725 919 788 996 777 985 792 1000 805 1013 794 1004 805 1015
1,6-4 180 135 343 613 807 308 970 1164 1000 1194	788 996 777 985 792 1000 805 1013 794 1004 805 1015
32 6,3 10,16 260 150 350 621 829 315 1013 1221 1008 1216 40 1,6-4 200 145 348 651 859 313 1043 1251 1038 1246 1038 1246 1236 1038 1246 1236 1038 1246 1236 1038 1241 1026 1236 1263 10,16 1042 1252 1037 1247 1276 1236 10,16 1042 1252 1037 1246 1246 1247 1247 1247 1247 1247 1247 1247 1247 1247 1259 1239 1254 1259	777 985 792 1000 805 1013 794 1004 805 1015
10, 16	792 1000 805 1013 794 1004 805 1015
40 1,6-4 200 145 348 651 859 313 1043 1251 1038 1246 1038 1246 1038 1246 1038 1246 1038 1246 1038 1246 1038 1246 1038 1246 1036 1038 1251 1038 1246 1236 1036 1038 1251 1038 1246 1236 1038 1263 1039 1247 1038 1247 1038 1247 1038 1247 1038 1246 1036 1247 1038 1247 1038 1247 1038 1247 1048 1048 1048 1048 1048 1048 1048 1048 1048 1048 1048 1048 1048 1048 1048 1048 1048 1048 1048 1058 1048 1048 1058 1039 1254 1039 1254 1039 1254 1039 1254 1241 1048 1048 1048 1048 1048 1048 1048 1048 1048 1048 1048 10	805 1013 794 1004 805 1015
10, 16 260 165 358 650 860 1042 1252 1037 1247 1050 1046 1050 105	805 1015
10, 16	
50 6,3 300 175 363 639 854 328 1031 1246 1026 1241 10,16 10,16 195 375 652 867 340 1044 1259 1039 1254 1039 1254 1039 1254 1039 1254 1039 1254 1039 1254 1039 1254 1039 1254 1039 1254 1039 1254 1039 1254 1039 1254 1039 1254 1039 1254 1039 1254 1039 1254 1039 1254 1039 1254 1039 1254 1046 1071 1318 1076 1326 1046 1071 1381 1076 1326 1046 1071 1381 1066 1071 1381 1062 1362 1362 1362 1362 1362 1362 1362 1362 1362 1362 1362 1362 1362 1362 1362 1362 1362	
10, 16 300 195 375 652 867 340 1044 1259 1039 1254 1039 1058 1318	800 1027
10, 16	794 1009
65 6,3	807 1022
10, 16	827 1087
80 1,6-4 310 195 373 644 954 338 1096 1406 1071 1381 380 10,16 380 210 385 635 935 350 1087 1387 1062 1362 100 1,6 230 398 647 947 365 1099 1399 1074 1374 100 1,6 25-4 250 400 743 1048 365 1215 1520 1110 1415 10,16 430 250 400 743 1048 365 1215 1520 1110 1415 125 1,6 2,5-4 400 245 412 779 1139 377 1251 1611 1146 1506 150 2,5-4 480 280 425 788 1148 390 1260 1620 1155 1515 150 350 340 445 767 1132 410 1239 1604 1149 1514 1,6 335 443 445 767 1132 410 1239 1604 1134 1499 150 350 360 455 <td>844 1094</td>	844 1094
80	
10, 16	840 1150
100 1,6 350 215 390 749 1069 355 1221 1541 1116 1436 6,3 430 250 400 743 1048 365 1215 1520 1110 1415 10, 16 430 265 415 741 1061 380 1213 1533 1108 1428 150 1,6 400 245 412 779 1139 377 1251 1611 1146 1506 150 1,6 480 280 425 788 1148 390 1260 1620 1155 1515 150 6,3 550 340 445 767 1132 410 1239 1604 1134 1499 10, 16 335 443 408 408 2,5 600 360 455 845 1232 420 1317 1704 1212 1599 1	830 1130
100 2,5-4 350 230 390 749 1069 355 1221 1541 1116 1436 6,3 430 250 400 743 1048 365 1215 1520 1110 1415 10, 16 265 415 741 1061 380 1213 1533 1108 1428 1,6 2,5-4 400 245 412 779 1139 377 1251 1611 1146 1506 1,6 2,5-4 480 280 425 788 1148 390 1260 1620 1155 1515 150 6,3 550 340 445 767 1132 410 1239 1604 1134 1499 1,6 335 443 408 2,5 600 360 455 845 1232 420 1317 1704 1212 1599 1	840 1140
10, 16 10, 16	930 1250
10, 16 265 415 741 1061 380 1213 1533 1108 1428 1,6 2,5-4 400 245 412 779 1139 377 1251 1611 1146 1506 1,6 2,5-4 500 295 432 771 1131 397 1243 1603 1138 1498 1,6 2,5-4 480 280 425 788 1148 390 1260 1620 1155 1515 6,3 300 445 767 1132 410 1239 1604 1134 1499 1,6 350 460 782 1147 425 1254 1619 1149 1514 1,6 335 443 408 2,5 600 360 455 845 1232 420 1317 1704 1212 1599 1	926 1231
125	923 1243
150	960 1420
1,6 280 425 788 1148 390 1260 1620 1155 1515 6,3 340 445 767 1132 410 1239 1604 1134 1499 10, 16 350 460 782 1147 425 1254 1619 1149 1514 1,6 335 443 408 2,5 600 360 455 845 1232 420 1317 1704 1212 1599 1	952 1412
150 6,3 340 445 767 1132 410 1239 1604 1134 1499 10, 16 350 460 782 1147 425 1254 1619 1149 1514 1,6 335 443 408 2,5 600 360 455 845 1232 420 1317 1704 1212 1599 1	970 1330
10, 16	954 1319
1,6 335 443 2,5 600 360 455 845 1232 420 1317 1704 1212 1599 1	963 1328
2,5 600 360 455 845 1232 420 1317 1704 1212 1599 1	
	1033 1420
200 4 375 463 428	
6.3 405 478 840 1227 443 1312 1699 1207 1594 1	1026 1413
10, 16 430 490 838 1378 487 1310 1850 1205 1745 1	1060 1600
1,6 405 - 498	
2,5 730 425 - 1382 ³ 1848 ³ 498 1467 1927 1362 1822 1	1383 1843
250 4 445 - 517	
6,3 780 470 - 570	
1394 ³ 1860 ³ 1479 1939 1374 1834 1	1377 1837
1.6 460 - 612	
2.5 850 485 - 624	1.150
300 4 980 510 - 1492 ³ 2094 ³ 628 1517 2119 1412 2014 1	1450 2052
6,3 1040 530 - 640	
1,6 1100 580 -	
4 1210 655 -	1635
6,3 1220 670 - 1673 ³ 2275 ³ 1698 - 1593 - 1	1635

¹ Электропривод МЭПК 6300-II BT4-01 ² Электропривод AUMA SAREx 07.1/AMEx01.1/LE 12.1 ³ МЭП 20000/200-100-II DN4-02

СТРУКТУРА УСЛОВНОГО ОБОЗНАЧЕНИЯ КЛАПАНОВ РУСТ® СЕРИЙ 300, 400, 500

РУСТ®	х	х	х		х	XXX
	1	2	3	_	4	5

1	Тип клапана	«3» – запорный «4» – запорно-регулирующий, регулирующий «5» – регулирующий
2	Вид уплотнения штока	«1» – с сальниковым уплотнением «2» – сильфонное уплотнение
3	Обозначение специальных исполнений	«0» – обычный «2»* – криогенный «3»* – с рубашкой обогрева «4»* – угловой
4	Тип привода	«1» – пневмопривод «2» – электропривод «3» – ручной привод
5	Климатическое исполнение	У – (от -40 до +70) °C УХЛ(1) – (от –60 до +70) °C

^{*} Возможно специальное исполнение, согласовывается при заказе

После условного обозначения должна следовать описательная часть со следующей информацией:

- диаметр условного прохода
- условное давление
- максимальная температура рабочей среды
- требуемый класс герметичности
- минимальная температура рабочей среды (если она ниже величины по климатическому исполнению)
- материал корпуса
- условная пропускная способность и пропускная характеристика (для регулирующих и запорнорегулирующих клапанов)
- 👽 исходное положение клапана при комплектации пневмоприводом

ПРИМЕР УСЛОВНОГО ОБОЗНАЧЕНИЯ КЛАПАНА ПРИ ЗАКАЗЕ

Клапан РУСТ® 410-1 УХЛ(1), DN80, PN1,6МПа, рабочая среда – пар, +150 °C, класс герметичности «В», 12X18H10T, KVy 50P, H3

КЛАПАН ЗАПОРНЫЙ С ЭЛЕКТРОМАГНИТНЫМ ПРИВОДОМ СЕРИИ ЗК-М

Запорные клапаны РУСТ® серии ЗК-М с электромагнитным приводом предназначены для быстрого автоматического перекрытия потоков жидких и газообразных сред.

ПРИМЕНЕНИЕ

Газовая, нефтяная, химическая и пищевая промышленность; для аварийной защиты системы, топливно-наливные системы и т. п.

DN – диаметр условного прохода, мм от 10 до 80

PN – условное давление, **МП**а от 1,6 до 10

 T^{0} – температура рабочей среды, ${}^{0}C$ от -60 до +50

ПРЕИМУЩЕСТВА ПРИМЕНЕНИЯ КЛАПАНОВ ЗАПОРНЫХ (ОТСЕЧНЫХ) С ЭЛЕКТРОМАГНИТНЫМ ПРИВОДОМ СЕРИИ ЗК-М

Массогабаритные характеристики

Благодаря своей конструкции запорные клапаны со встроенным электромагнитным приводом имеют малый вес и размеры, что упрощает их монтаж, демонтаж и техническое обслуживание.

Отсутствие сальникового узла

Конструкция выполнена без сальникового узла, что уменьшает количество проверок, а также практически исключает возможность утечки рабочей среды в окружающую среду.

Быстрота срабатывания

Благодаря высокой скорости срабатывания электромагнитного клапана возможна точная дозировка подачи рабочей среды или мгновенная реакция клапана на управляющий сигнал. Это качество позволяет устанавливать запорные электромагнитные клапаны на отсечные магистрали или использовать в качестве систем аварийного срабатывания.

- ▶ Ремонтопригодность без снятия с трубопровода
- Наличие ручного дублёра
- ▼ Гарантированное открытие без перепада рабочей среды
- Взрывозащищённое исполнение

Электромагнитные клапаны выполнены во взрывозащищенном исполнении (1ExdIICT6X), что позволяет устанавливать их в опасных зонах, окружающая среда в которых содержит взрывоопасные смеси газов и паров с воздухом.

Минимальное энергопотребление

Электромагнит в режиме работы на удержание сердечника электромагнита автоматически переходит в режим низкого энергопотребления. В режиме низкого энергопотребления уменьшается нагрев при длительном режиме работы.

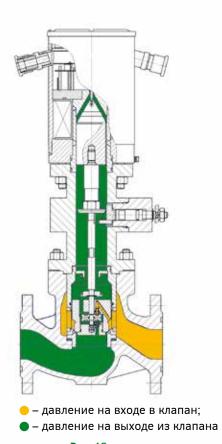
ПРИНЦИП ДЕЙСТВИЯ КЛАПАНОВ ЗАПОРНЫХ (ОТСЕЧНЫХ) С ЭЛЕКТРОМАГНИТНЫМ ПРИВОДОМ СЕРИИ ЗК-М

В основе конструкции запорных клапанов лежит принцип управления клапаном с помощью электромагнитных сил. В соответствии с этим принципом перемещение запирающего элемента (плунжера) клапана осуществляется с помощью электромагнита, встроенного в корпус.

В исходном положении (рис. 17) клапан закрыт. Давление внутри клапана равно давлению на входе в клапан, плунжер прижимается к седлу давлением среды.

При подаче управляющего сигнала на электромагнитный привод первым срабатывает пилотный клапан (рис. 18).


Диск пилотного клапана перемещается вверх и перекрывает канал перетока входного давления. Одновременно с этим открывается канал сброса давления из внутренних полостей клапана в выходной патрубок. За счёт сброса давления в выходной патрубок давление под плунжером и над ним уравновешивается.


Шток, перемещаясь вверх, упирается в упор на плунжере и тянет плунжер вверх. Клапан открывается (рис. 19). Шток с плунжером перемещаются совместно, пока якорь электромагнита не упрётся в стакан. Клапан открыт. Система переходит в режим удержания, и энергопотребление электромагнита автоматически снижается.

При подаче сигнала на закрытие клапана питание на электромагнит прекращается. Возврат в исходное положение осуществляется возвратной пружиной, сжимаемой электромагнитом в момент перемещения плунжера. После закрытия плунжера этой же пружиной пилотный клапан переводится в исходное положение. Клапан закрыт.

РАБОТА ОТ РУЧНОГО ДУБЛЁРА

Для перевода клапана из исходного положения в рабочее в случае отсутствия подачи электропитания на электромагнит управление клапаном возможно с помощью ручного дублёра, встроенного в корпус.

ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ КЛАПАНОВ ЗАПОРНЫХ (ОТСЕЧНЫХ) С ЭЛЕКТРОМАГНИТНЫМ ПРИВОДОМ СЕРИИ ЗК-М

Таблица 6

Наименование параметра	Значение
Условный диаметр, DN, мм	10; 15; 20; 25; 32; 50; 80
Условное давление, PN, МПа	1,6; 2,5; 4; 6,3; 10
Рабочие среды	Разнообразные жидкие и газообразные продукты и пожароопасные, содержащие органические соединения и механические включения; за исключением особо вязких, агрессивных и кристаллизующихся сред
Температура рабочей среды, °С	от -60 до +50
Климатическое исполнение (температура окружающей среды, °C)	У (от -40 до +70) УХЛ(1) (от -60 до +70)
Присоединение к трубопроводу	Фланцевое по ГОСТ, ANSI B16,5 Приварное
Тип устанавливаемых приводов	Электромагнитный (встроенный) с ручным дублером
Материал корпуса	Стали: 20, 25, 09Г2С, 12Х18Н10Т, 10Х17Н13М2Т
Материалы внутренних деталей	Стали: 12Х18Н10Т, 07Х21Г7АН5 (ЭП-222), 14Х17Н2, ЭП410, 10Х17Н13М3Т
Тип клапанов	Запорные (полнопроходные) с электромагнитным приводом
Тип уплотнения	«Мягкое уплотнение»
Классы герметичности	А по ГОСТ 9544-2015
Направление потока	Одностороннее
Время срабатывания, сек.	от 1 до 2

МАССЫ, ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ КЛАПАНОВ ЗАПОРНЫХ (ОТСЕЧНЫХ) С ЭЛЕКТРОМАГНИТНЫМ ПРИВОДОМ СЕРИИ ЗК-М

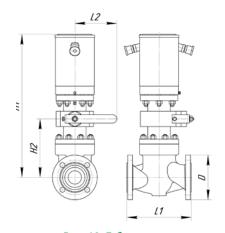


Рис. 19. Габаритные и присоединительные размеры клапанов серии ЗК-М

								Таблица 7
DN, mm	PN, Мпа	L1, мм	L2, мм	D, мм	Н1, мм	Н2, мм	Н3, мм	Масса, кг
10	1,6-6,3	108		*	392	80,5		20
15	1,6-4,0	130		95	412	108,5		23
20	1,6-4,0	150		105	453	150		25
	1,6	160		115	480	172,5		29
25	6,3	230		135	492	195		35
	10	230	450	135	484	183		40
32	1,6	180		135	491	192		30
32	6,3	260	150	150	489,5	191		37
	1,6-4,0	230		160	513	211,5		32
50	6,3	300		175	521,5	220		38
	10	300		195	523	223		43
	1,6-4,0	310		195	543	245		36
80	6,3	380		210	543,5	245		38
	10	380		230	570,5	272		43

СТРУКТУРА УСЛОВНОГО ОБОЗНАЧЕНИЯ КЛАПАНОВ ЗАПОРНЫХ (ОТСЕЧНЫХ) С ЭЛЕКТРОМАГНИТНЫМ ПРИВОДОМ СЕРИИ ЗК-М

ЗК-М	XXX	X	0	X	XX	XX	XX	XXX
	1	2	3	4	5	6	7	8

1	Тип клапана	ЗК-М – запорный клапан с электромагнитным приводом			
2	Давление среды PN, кгс/см²	2 - 16; 3 - 25; 4 - 40; 5 - 63; 6 - 100			
3	Тип корпуса	0 – прямой проходной			
4	Температура регулируемой среды, °С	1 — до +50 ¹ ¹ нижнее значение определяется температурой окружающей среды			
5	Материал корпуса	НЖ – сталь нержавеющая ХЛ – сталь низколегированная, хладостойкая М – сталь нержавеющая, молибденсодержащая			
6	Условный проход DN, мм	10; 25; 32; 50; 80			
7	Исходное положение клапана	НЗ – нормально-закрытое			
8	Климатическое исполнение, °С	У – (от -40 до +70) УХЛ (1) – (от -60 до +70)			

После условного обозначения должна следовать описательная часть со следующей информацией:

- температура рабочей среды
- 👽 тип и параметры рабой среды; наличие в рабочей среде механических включений
- исходное положение клапана

ПРИМЕР УСЛОВНОГО ОБОЗНАЧЕНИЯ КЛАПАНА ПРИ ЗАКАЗЕ

Запорный клапан с электромагнитным приводом DN = 80 мм, PN = 1,6 МПа, корпус из нержавеющей стали, климатическое исполнение – У. Обозначение: $PYCT^{\otimes}$ 3K-M 201 нж 80 У

По требованию заказчика клапаны могут быть укомплектованы в соответствии с заказом ответными фланцами с крепежом.

КЛАПАН МИКРОРАСХОДА РУСТ® СЕРИИ 411

Запорно-регулирующие клапаны РУСТ® серии 411 предназначены для точного регулирования и отсечки потоков жидких и газообразных сред с малыми расходами (микрорасходами).

ПРИМЕНЕНИЕ

Газовая, нефтяная и химическая промышленности; высокие давления и перепады, малые расходы сред; для дозирования метанола, присадок, ингибиторов и т.п.

DN – диаметр условного прохода, мм от 15 до 25

PN – условное давление, **МП**а от 1,6 до 32

 T^{o} – температура рабочей среды, o C от -60 до +150

ПРЕИМУЩЕСТВА ПРИМЕНЕНИЯ КЛАПАНОВ МИКРОРАСХОДА РУСТ® СЕРИИ 411

Массогабаритные характеристики

Благодаря корпусу, выполненному из штампованной заготовки, и вкручиваемой на резьбе крышке клапаны серии 411 имеют относительно малый вес и размеры, что упрощает их монтаж, демонтаж и техническое обслуживание.

⊘ Возможность применения обычных приводов и автоматики

Благодаря запатентованной конструкции клапаны серии 411 не требуют применения приводов с малыми регулируемыми ходами. Регулируемый ход клапанов одинаков для всех исполнений и составляет 10 мм, что позволяет применять обычные модели пневматических, ручных и электрических приводов, а также автоматики управления.

Высокая стойкость регулирующей пары

Благодаря применению керамики и азотированного титана клапаны серии 411 имеют высокую стойкость против эрозии и кавитации, что позволяет им длительно сохранять регулировочную характеристику.

Применение в составе с фильтром

Для обеспечения бесперебойного функционирования предоставляется возможность комплектации клапанов серии 411 фильтром оригинальной конструкции типа ФС, специально разработанным для применения на микрорасходах.

ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ КЛАПАНОВ МИКРОРАСХОДА РУСТ® СЕРИИ 411

Таблица 8

Наименование параметра	Значение
Условный диаметр, DN, мм	15; 20; 25
Условное давление, PN, МПа	1,6; 2,5; 4; 6,3; 10; 16; 25; 32
Пропускная способность, Kvy, м³/ч	0,0008; 0,0016; 0,0032; 0,0063; 0,01; 0,02; 0,032
Рабочие среды	Разнообразные жидкие и газообразные продукты, в т.ч. агрессивные, очищенные от механических примесей; за исключением особо вязких и кристаллизующихся сред.
Температура рабочей среды, °С	от -60 до +150
Климатическое исполнение (температура окружающей среды, $^{\circ}$ C)	У (от -40 до +70) УХЛ(1) (от -60 до +70)
Присоединение к трубопроводу	Фланцевое по ГОСТ, ANSI B16,5 Муфтовое (внутренняя резьба коническая или цилиндрическая)
Тип устанавливаемых приводов	Пневматический Электрический (Rotork) Ручной
Материал корпуса	Стали: 09Г2С
Материалы внутренних деталей	Стали: 20Х13, ЭП410, ЭП222, 12Х18Н10Т, 10Х17Н13М3Т
Материал пары клапан/седло	Керамика: нитрид кремния, оксид алюминия Азотированный титан BT-3-1
Тип клапанов	Запорно-регулирующие
Тип уплотнения	«Металл-металл» «Керамика»
Классы герметичности	А, В по ГОСТ 9544-2015
Характеристика регулирования	Линейная
Направление потока	Одностороннее
Минимальное время срабатывания (с пневматическим приводом), сек.	от 1 до 2

МАССЫ, ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ КЛАПАНОВ МИКРОРАСХОДА РУСТ $^{\circ}$ СЕРИИ 411 С ПНЕВМАТИЧЕСКИМИ И РУЧНЫМИ ПРИВОДАМИ

PN, МПа		1,6 - 4,0		6,3		10, 16			25, 32			
DN, mm	15	20	25	15	20	25	15	20	25	15	20	25
D1, mm	95	105	115	105	125	135	105	125	135		-	
d	K1/2", G1/2"	K3/4", G3/4"	K1", G1"									
L1, MM	164 176		180	176	180		130					

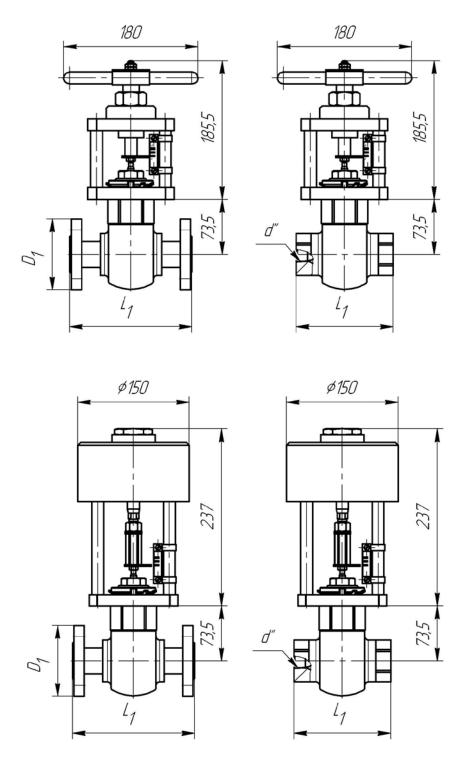


Рис. 20. Габаритные размеры клапанов микрорасхода РУСТ серии 411

СТРУКТУРА УСЛОВНОГО ОБОЗНАЧЕНИЯ КЛАПАНОВ МИКРОРАСХОДА РУСТ® СЕРИИ 411

РУСТ®	411	_	X	XXX
	1		2	3

1	Серия клапана	411 – клапан запорно-регулирующий микрорасходный с саль- никовым уплотнением
2	Тип привода	1 – пневматический 2 – электрический 3 – ручной
3	Климатическое исполне- ние	У – (от -40 до +70) °C УХЛ(1) – (от -60 до +70) °C

После условного обозначения должна следовать описательная часть со следующей информацией:

- условный проход клапана DN, мм
- оминальное давление РN, МПа
- ▼ максимальная температура рабочей среды (не более 150 °C)
- материал корпуса
- тип присоединения к трубопроводу
- условная пропускная способность
- исходное положение клапана при комплектации пневматическим приводом

ПРИМЕР УСЛОВНОГО ОБОЗНАЧЕНИЯ КЛАПАНА ПРИ ЗАКАЗЕ

Клапан РУСТ® 411-1 УХЛ(1), DN15, PN250, 100°C, сталь 09Г2С, муфтовый, Кvy 0,032, H3.

КЛАПАН РУСТ® С КЕРАМИЧЕСКИМИ ЭЛЕМЕНТАМИ СЕРИИ 415

Запорно-регулирующие и регулирующие клапаны РУСТ[®] серии 415 предназначены для регулирования и отсечки потоков жидких и газообразных сред.

ПРИМЕНЕНИЕ

Газовая, нефтяная, химическая, пищевая, энергетическая, металлургическая и другие промышленности; трубопроводный транспорт.

DN – диаметр условного прохода, мм от 15 до 100

PN – условное давление, МПа

от 1,6 до 16

специальное исполнение: до 25, до 40

Т° – температура рабочей среды, °С от -60 до +225

ПРЕИМУЩЕСТВА ПРИМЕНЕНИЯ КЛАПАНОВ РУСТ® С КЕРАМИЧЕСКИМИ ЭЛЕМЕНТАМИ СЕРИИ 415

- Увеличенный срок службы рабочего органа в жестких условиях эксплуатации
 - Благодаря высокой твердости и химической стойкости керамических элементов рабочего органа клапаны РУСТ® серии 415 могут применяться в тяжелых рабочих условиях. При наличии абразива в потоке, кавитации и химической агрессивности среды и при одновременном сочетании неблагоприятных факторов.
- Защита корпуса от эрозионного воздействия потока
 - Высокоскоростной поток, проходящий через рабочий орган, в режиме регулирования гасит свою скорость на внутренней поверхности втулки и не воздействует прямо на корпус.

ПРИНЦИП ДЕЙСТВИЯ КЛАПАНОВ РУСТ® С КЕРАМИЧЕСКИМИ ЭЛЕМЕНТАМИ СЕРИИ 415

Основными рабочими элементами в таком дроссельном узле являются керамические вставки в седло и в плунжер (рис.20).

Исходным материалом для вставок служит оксид алюминия (Al_2O_3), оксид циркония (ZrO_2), карбид кремния (SiC) или горячепрессованный нитрид кремния (Si_3N_4).

Керамические изделия имеют твердость 9 единиц по МООС (шкала твердости минералов), они не подвержены абразивному износу песчаными пульпами (твердость кварца – 7 единиц), в силу химической нейтральности не взаимодействуют со щелочами и кислотами, кроме плавиковой (фтористоводородной) кислоты.

Принцип работы клапанов с керамическими дроссельными узлами такой же, как для клапанов стандартной плунжерной конструкции с металлическим дроссельным узлом.

Керамика является очень твердым материалом, следовательно, идеально подогнать плунжер и седло относительно друг друга так, чтобы не было протечки, не представляется возможным. Поэтому наименьшая протечка на этих клапанах соответствует классу герметичности В. Если функция отсечки не требуется, т.е. клапан только регулирующий, то III – IV класс герметичности.

Существует полная взаимозаменяемость дроссельных узлов одного типоразмера арматуры, поэтому есть возможность замены стандартного дроссельного узла (не из керамики) на керамический дроссельный узел без демонтажа клапана с трубопровода, а также возможность дозаказать дроссельный узел из керамики к ранее поставленному клапану производства РУСТ®.

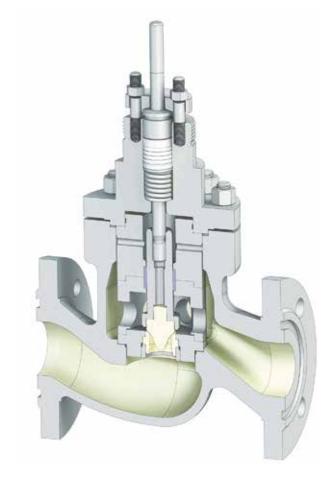


Рис. 21

ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ КЛАПАНОВ РУСТ® С КЕРАМИЧЕСКИМИ ЭЛЕМЕНТАМИ СЕРИИ 415

Наименование параметра	Значение
Условный диаметр, DN, мм	15; 20; 25*; 32; 40*; 50; 65; 80; 100
Условное давление, PN, МПа	1,6; 2,5; 4; 6,3; 10; 16
Рабочие среды	Газообразные и жидкие продукты, в т.ч. агрессивные и содержащие твердые включения; а также вязкие и кристаллизующиеся среды
Температура рабочей среды, °С	От -60 до + 225
Климатическое исполнение (температура окружающей среды, °C)	У (от -40 до +70) УХЛ(1) (от -60 до +70)
Присоединение к трубопроводу	Фланцевое по ГОСТ, ANSI B16,5* Приварное* Муфтовое*
Тип устанавливаемых приводов	Пневматические, с боковым или верхним дублерами, или без дублера Ручные с фиксацией в промежуточных положениях Электрические (AUMA, Schiebel, Гусар, МЭПК) фиксированные, с функцией НО/НЗ
Материал корпуса	Стали: 20ГЛ, 20ХНЗЛ, 20ГМЛ, 20Х5МФЛ, 20ХМФЛ, 12Х18Н9ТЛ, 12Х18Н12МЗТЛ, 07Х20Н25МЗД2ТЛ Сплавы: 06ХН28МДТЛ*, Н65МФЛ*, ХН65МВЛ (Hastelloy C, B)*
Материалы внутренних деталей	Стали: 20X13, ЭП410, ЭП222, 12X18H10T, 10X17H13M3T, ЭИ943, Nitronic-60, 17-4PH Сплавы: XH65MB, BT-3-1, Стеллит
Тип клапанов	Регулирующие Запорно-регулирующие
Тип уплотнения	«Керамика-керамика»
Классы герметичности	В, III, IV по ГОСТ 9544-2015
Характеристика регулирования	Линейная Равнопроцентная
Направление потока	Одностороннее
Минимальное время срабатывания с пневматическим приводом, сек. Регулирующие и запорно-регулирующие клапаны	В зависимости от навески, информация по запросу

^{*} Специальное исполнение, согласовывается при заказе

ПРОПУСКНАЯ СПОСОБНОСТЬ КЛАПАНОВ РУСТ® С КЕРАМИЧЕСКИМИ ЭЛЕМЕНТАМИ СЕРИИ 415

Таблица 11

	Пропускная способность Kvy (м³/час)
Номинальный диаметр, DN, мм	Регулирующих и запорно-регулирующих
15	0,1 – 2,5
20	0,1 – 2,5
25	0,1 – 10
32	0,1 – 10
40	0,1 – 20
50	0,1 – 32
65	0,1 – 32
80	0,1 – 32
100	1,6 – 32

МАССЫ КЛАПАНОВ РУСТ® С КЕРАМИЧЕСКИМИ ЭЛЕМЕНТАМИ СЕРИИ 415

		Массы, кг						
DN, mm	PN, MΠa	с пневматическим	с ручным	с электроприводом, серии 310-2				
		приводом серии 310-1	приводом серии 310-3	AUMA ¹ , Schiebel ²	МЭПК ³	Гусар		
15	1,6; 2,5; 4,0	15	19	58	26	37		
15	6,3; 10; 16	20	24	63	31	42		
20	1,6; 2,5; 4,0	18	21	60	28	39		
20	6,3; 10; 16	22	26	65	33	44		
	1,6; 2,5; 4,0	19	22	61	29	40		
25	6,3	23	27	66	34	45		
	10; 16	23	27	66	34	45		
	1,6; 2,5; 4,0	29	28	66	34	45		
32	6,3	34	33	70	38	49		
	10; 16	38	37	75	43	54		
	1,6; 2,5; 4,0	32	31	68	37	48		
40	6,3	39	40	76	44	54		
	10; 16	54	53	90	59	70		
	1,6; 2,5; 4,0	37	36	74	41	53		
50	6,3	46	45	83	51	61		
	10; 16	65	64	101	70	81		
65	1,6; 2,5; 4,0	58	50	85	54	64		
00	6,3; 10; 16	114	106	141	109	121		
	1,6; 2,5; 4,0	72	64	100	68	79		
80	6,3	80	72	107	75	86		
	10; 16	103	105	140	108	119		
	1,6; 2,5; 4,0	108	84	118	88	98		
100	6,3	122	99	134	102	113		
	10; 16	196	145	180	148	159		

¹ Электропривод AUMA SAREx 07.1/AMEx01.1/LE 12.1

² Электропривод МЭПК 6300 - II BT4 - 01

ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ КЛАПАНОВ РУСТ® С КЕРАМИЧЕСКИМИ ЭЛЕМЕНТАМИ СЕРИИ 415 С МЕМБРАННЫМИ ПРИВОДАМИ

DN	PN, МПа	11	D 1, мм	D2, мм	12		T= 2	25°C			
DN, MM	PN, MIIa	L1, мм	D1, MM	DZ, MM	L2, мм	Н1, мм	Н2, мм	Н3, мм	Н4, мм		
15	1,6 – 4	130	95	250		480	685	311	494		
15	6,3- 16	180	105	250	277	520	725	351	534		
20	1,6 – 4	150	105	250	277	480	685	311	494		
20	6,3 – 16	190	125	250	277	580	725	351	534		
25	1,6 – 4	160	115	250	277	495	700	326	509		
25	6,3 – 16	230	135	250	277	497	702	328	511		
	1,6 – 4	180	135			625	834	386	530		
32	6,3	260	150	310	277	613	822	374	518		
	10 – 16	260	150			613	822	374	518		
	1,6 – 4	200	145	310	310 277	662	871	423	567		
40	6,3	260	165			630	839	391	535		
	6,3 – 16	260	165			642	851	403	547		
	1,6 – 4	230	160	310	310	310		631	840	392	536
50	6,3	300	175				277	616	825	377	521
	10 – 16		195			643	852	405	548		
	1,6 – 4	290	180			792	1016	568	622		
65	6,3	340	200	380	357	853	1077	629	683		
	10 – 16	340	220			853	1077	629	683		
	1,6 – 4	310	195			848	1057	468	634		
80	6,3	200	210	380	357	836	1045	456	622		
	10 – 16	380	230			850	1059	470	636		
	16	250	215	390	740	1060	255	1221	1541		
100	25, 40	350	230	390	749	1069	355	1221	1541		
100	63	430	250	400	743	1048	365	1215	1520		
	100, 160	430	265	415	741	1061	380	1213	1533		

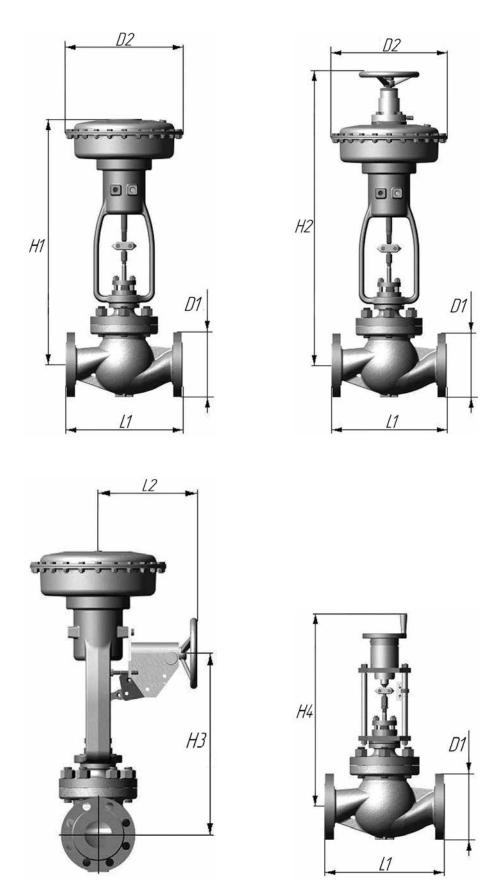


Рис. 22. Габаритные размеры клапанов РУСТ с керамическими элементами серии 415

ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ КЛАПАНОВ РУСТ® С КЕРАМИЧЕСКИМИ ЭЛЕМЕНТАМИ СЕРИИ 415 С ЭЛЕКТРОПРИВОДАМИ

					мэпк		MA	ГУСАР	SCHIEBEL
DN, mm	PN, MΠa	L1, мм	D1, мм		Н1, мм		Н1, мм	Н1, мм	Н1, мм
				L2, мм	225°	L2, мм	225°	225°	225°
4.5	1,6 – 4	130	95	323	602	288	959	989	715
15	6,3 -16	180	105	335	631	300	988	1018	743
	1,6 – 4	150	105	328	602	293	959	989	716
20	6,3 -16	190	125	338	631	303	988	1018	743
	1,6 – 4	160	115	333	603	298	960	990	716
25	6,3 -16	230	135	343	613	308	970	1000	725
	16 – 4	180	135	343	633	308	1025	1020	788
32	6,3	260	150	350	621	315	1013	1008	777
	10 – 16	260	150	350	621	315	1013	1008	792
	1,6 – 4	200	145	348	651	313	1043	1038	805
40	6,3	260	165	358	639	323	1031	1026	794
	10 – 16	260	165	358	650	323	1042	1037	805
	1,6 – 4	230	160	350	646	320	1038	1036	800
50	6,3	300	175	363	639	328	1031	1026	794
	окт.16		195	375	652	340	1044	1039	807
	1,6 – 4	290	180	365	631	330	1083	1058	827
65	6,3	340	200	375	649	340	1101	1076	044
	10 – 16	340	220	385	649	350	1101	1076	844
	1,6 – 4	310	195	373	644	338	1096	1071	840
80	6,3	200	210	385	635	350	1087	1062	830
	10 – 16	380	230	398	647	365	1099	1074	840
	16	350	215	390	749	355	1221	1116	930
100	25, 40	330	230	390	743	333	1221	1110	330
100	63	430	250	400	743	365	1215	1110	926
	100, 160	150	265	415	741	380	1213	1108	923

СТРУКТУРА УСЛОВНОГО ОБОЗНАЧЕНИЯ КЛАПАНОВ РУСТ® С КЕРАМИЧЕСКИМИ ЭЛЕМЕНТАМИ СЕРИИ 415

РУСТ®	415		X	XXX
	1	_	2	3

1	Тип клапана	«415» – запорно-регулирующий, регулирующий с керамическими элементами и сальниковым уплотнением
2	Тип привода	«1» – пневмопривод «2» – электропривод «3» – ручной привод
3	Климатическое исполнение	У – (от -40 до +70) °C УХЛ(1) – (от –60 до +70) °C

После условного обозначения должна следовать описательная часть со следующей информацией:

- диаметр условного прохода
- условное давление
- максимальная температура рабочей среды
- требуемый класс герметичности
- минимальная температура рабочей среды (если она ниже величины по климатическому исполнению)
- материал корпуса
- условная пропускная способность и пропускная характеристика
- 👽 исходное положение клапана при комплектации пневмоприводом

ПРИМЕР УСЛОВНОГО ОБОЗНАЧЕНИЯ КЛАПАНА ПРИ ЗАКАЗЕ

«Клапан РУСТ® 415-1 УХЛ(1), DN80, PN1,6МПа, рабочая среда – пар, +150 $^{\circ}$ С, класс герметичности «В», 12X18H10T, KVy 25P, H3

КРАН ШАРОВОЙ ЗАПОРНЫЙ И КРАН-РЕГУЛЯТОР РУСТ® СЕРИИ 600

Краны шаровые запорные и краны-регуляторы РУСТ® серии 600 (далее краны шаровые) предназначены для герметичного перекрытия или/и регулирования потоков жидких или газообразных сред. Краны изготавливаются с корпусом, имеющим разъем в плоскости, перпендикулярной оси трубопровода. Разъем стянут шпильками и может быть использован при техническом обслуживании крана.

ПРИМЕНЕНИЕ

Газовая, нефтяная, химическая, пищевая, энергетическая, металлургическая и другие промышленности; трубопроводный транспорт; разнообразные рабочие условия.

DN – диаметр условного прохода, мм

от 15 до 500

PN – условное давление, МПа

от 1,6 до 40

T° – температура рабочей среды, °С

от -196 до +350

ПРЕИМУЩЕСТВА ПРИМЕНЕНИЯ КРАНОВ ШАРОВЫХ РУСТ® СЕРИИ 600

Полнопроходность

Размер отверстия в шаре соответствует размеру прохода трубы. Благодаря этому кран имеет минимальное гидравлическое сопротивление. Также через кран возможно пропускание скребковых элементов.

⊘ Возможность применения крана для регулирования

Для применения крана в качестве регулятора используется конструкция с разгрузкой седел за счет эффекта эжекции. В этом случае при открытии крана седла отжимаются от шара, уменьшая износ и момент на валу.

Возможность применения уплотнения «металл-металл»

Использование в производстве уникальных технологий позволило сделать качественное и надежное уплотнение «металл-металл», которое применяется для тяжелых рабочих условий:

- ✓ работа крана в режиме регулирования
- ✓ высокотемпературное исполнение
- ✓ исполнение для сильнозагрязненных сред

Ремонтопригодность

За счет наличия разъема в корпусе, возможно проведение ремонтно-профилактических работ, для чего необходимо снятие крана с трубопровода.

ПРИНЦИП ДЕЙСТВИЯ КРАНОВ ШАРОВЫХ РУСТ® СЕРИИ 600

Краны шаровые серии 600 построены по принципу «шар в опорах», обеспечивающему минимальные требования по моменту на валу (рис. 23). Корпус крана имеет разъем, стянутый шпильками и обеспечивающий ремонтопригодность при снятии крана с трубопровода. Вал крана выполняет также функцию опоры шара и выполнен с защитой против выброса. В крайних положениях возможна блокировка шара и сброс давления из внутреннего объема между корпусом и шаром. Таким образом может быть удален конденсат или загрязнения, а также осуществлена проверка герметичности седел или замена уплотнения вала.

Конструкция кранов включает в себя также устройство для снятия статического электричества, дублирование сальника и элементы пожароустойчивости. Шар крана выполняется из твердой коррозионностойкой стали с износостойким покрытием. Размер прохода в шаре соответствует размеру прохода трубы.

Седла крана выполняются из коррозионностойких сталей с неметаллическими вставками либо с износостойким покрытием для исполнения уплотнения «металл-металл». Седла крана прижимаются к шару за счет пружин и перепада давления, обеспечивая двухстороннюю герметичность во всем диапазоне рабочего давления. Также в корпусе выполняются отверстия с фитингами для закачки уплотнительной смазки в седла, что может использоваться для восстановления герметичности крана в экстренных случаях.

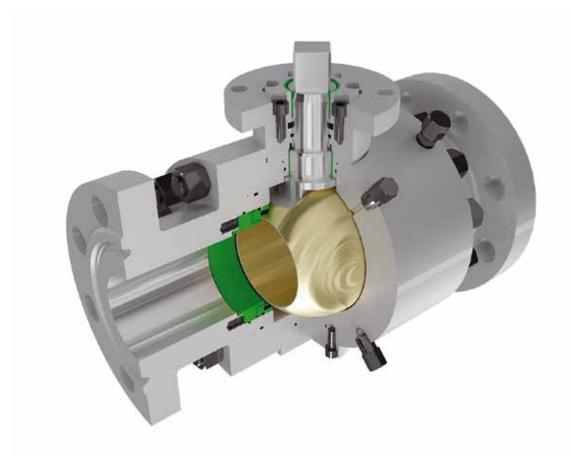


Рис. 24

СПЕЦИАЛЬНЫЕ ИСПОЛНЕНИЯ КРАНОВ ШАРОВЫХ РУСТ® СЕРИИ 600

ВЫСОКОТЕМПЕРАТУРНОЕ ИСПОЛНЕНИЕ

Для работы на высоких температурах применяется конструкция седел, использующая сильфон для поджима седла к шару (рис. 25). Сильфон предварительно сжат, обеспечивая прижим к шару при низких перепадах давления. При высоких перепадах давления за счет геометрии сильфона и седел возникает дополнительное усилие, прижимающее седло к шару и обеспечивающее герметичность. Сильфон выполнен из специальной высокопрочной коррозионностойкой стали и уплотнен с помощью графитовых прокладок. Уплотнение седел и шара - «металл-металл», с использованием напыления карбидом хрома. Подшипники и опорные поверхности выполнены из стеллита.

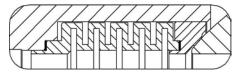
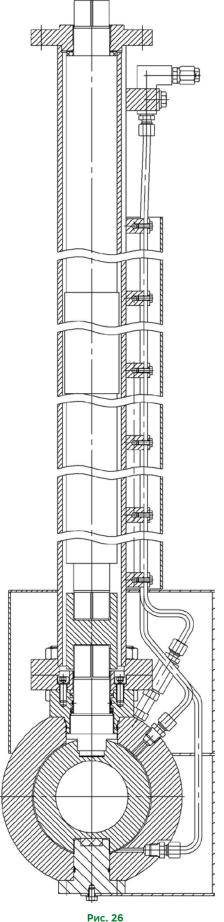



Рис. 25

ПОДЗЕМНОЕ ИСПОЛНЕНИЕ

Для обеспечения подземной установки кран выполняется с удлиненной стойкой, на которую крепится привод (рис. 26). Фитинги и трубки для закачки смазки и проверки герметичности, а также сброса спрятаны под специальный кожух и выводятся в зону обслуживания наверх. Корпус крана и стойка покрываются специальным составом, обеспечивающим длительную защиту поверхности металла в условиях непосредственного воздействия грунта.

ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ КРАНОВ ШАРОВЫХ РУСТ® СЕРИИ 600

Наименование параметра	Значение
Номинальный диаметр, DN, мм	50; 80; 100; 150; 200; 250; 300; 400; 500
Номинальное давление, PN, МПа	1,6; 2,5; 4; 6,3; 10; 16; 25; 40
Рабочие среды	Газообразные и жидкие продукты, в т.ч. агрессивные и содержащие твердые включения.
Температура рабочей среды, °С	Стандартное исполнение: от -60 до + 350 Специальные исполнения: от -196 до + 450
Климатическое исполнение (температура окружающей среды, °C)	У (от -40 до +70) УХЛ(1) (от -60 до +70)
Присоединение к трубопроводу	Фланцевое по ГОСТ, ANSIB16.5 Приварное
Тип устанавливаемых приводов	Пневматические, с дублером или без Ручные Электрические (Стерх, AUMA и др.)
Материал корпуса	Стали: 25Л, 20ГЛ, 20ХНЗЛ, 20ГМЛ, 12Х18Н9ТЛ, 12Х18Н12МЗТЛ, 07Х20Н- 25МЗД2ТЛ Сплавы: 06ХН28МДТЛ, Н65МФЛ, ХН65МВЛ (Хастеллой С, В)
Материалы внутренних деталей	Стали: 20X13, ЭП410, ЭП222, 12X18H10T, 10X17H13M3T, ЭИ943, Nitronic-60, 17-4PH Сплавы: XH65MB, Стеллит
Тип кранов	Запорные Краны-регуляторы
Конструктивные особенности	Полнопроходность Функция блокировки и сброса Дублирование сальника Антистатическое устройство Пожаробезопасное исполнение Смазка седел (для DN>80)
Специальные исполнения	Подземное Высокотемпературное Криогенное
Тип уплотнения	«Металл-металл» «Мягкое уплотнение»
Классы герметичности	А, В по ГОСТ 9544-2015
Характеристика регулирования (для кранов-регуляторов)	Равнопроцентная
Тип отсечки потока	Двухсторонняя
Минимальное время срабатывания с пневматическим приводом, сек. Запорные краны	12, для стандартной комплектации
Carreyrisic reparisi	1 – 2, по запросу
Краны-регуляторы	В зависимости от навески, информация по запросу

МАССЫ, ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ КРАНОВ ШАРОВЫХ РУСТ $^{\circ}$ СЕРИИ 600 (БЕЗ ПРИВОДА 1)

						таолица т
DN	PN, МПа	Фланец по ISO 5211, F	L, мм	D, мм	Н, мм (T=200 °/350 °C)	Масса, кг (T=200°/350°C)
	1,6-4,0	07	230	180	174/206	34/39
50	6,3-10	40	292	195	219/251	52/57
	16	10	350	195	245/277	65/70
	1,6-4,0	12	310	205	247/-	52/-
80	6,3-10	14	356	230	247/-	65/93
	16	12	450	256	280/-	120/-
	1,6	12	350	250	264/450	82/86
100	4,0	12	330		204/430	02/00
100	6,3-10	14	432	275	293/479	146/150
	16	14	457		328/514	220/224
	1,6	10	480	324	330/-	148/-
150	4,0	14	460	380	330/-	219/-
130	6,3-10	14	559	360	340/-	237/-
	16	16	610	350	330/-	271/-
	1,6	14	457	400	350/460	213/235
200	4,0	14	600	430	386/496	298/320
200	6,3-10	16	660	475	475/585	386/408
	16	25	737	4/5	4/5/565	530/-
	1,6-2,5	14	730	545	500/-	640/-
	4,0	16	/30	545	520/-	690/-
250	6,3	25	787	550	527/-	693/-
	10	23	767	330	327/-	730/-
	16	30	900	560	567/-	944/-
	1,6		610			577/645
	2,5	16	648	590	507/700	605/673
300	4,0		040			624/692
300	6,3		838	625	552/745	936/1004
	10	25 (30)		023	552/795	1108/1320
	16	30	965	640	332/133	1200/-
400	4,0	25	838	780	598/-	1679/-
	1,6	25	914	940	761/-	2630/-
500 10		40	1194	985	1028/-	4882/-
	16	40	1321	1060	1051/-	5988/-

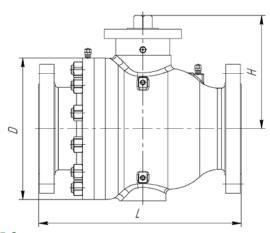


Рис. 27. Габаритные и присоединительные размеры кранов шаровых РУСТ® серии 600

¹ Размеры и массы кранов с приводами предоставляются по запросу

СТРУКТУРА УСЛОВНОГО ОБОЗНАЧЕНИЯ КРАНОВ ШАРОВЫХ РУСТ® СЕРИИ 600

РУСТ®	X	X X		_	X	X
	1	2	3		4	5

1	Тип клапана	6 – шаровой
2	Условное давление, МПа (ANSI)	1 - 1,6 (150) 2 - 2,5 (150) 3 - 4,0 (300) 4 - 6,3 (600) 5 - 10,0 (600) 7 - 25,0 (1500) 8 - 40,0 (2500)
3	Тип привода	1 – пневматический; 2 – электрический; 3 – ручной; 4 – пневмо-гидравлический.
4	Температура рабочей среды	1 – от минус 45 до плюс 225 °C; 2 – от минус 60 до плюс 225 °C; 3 – от минус 45 до плюс 320 °C; 4 – от минус 60 до плюс 320 °C; 5 – от минус 196 до плюс 450 °C.
5	Климатическое исполнение	У1; ХЛ1; УХЛ1.

После условного обозначения должна следовать описательная часть со следующей информацией:

- диаметр условного прохода
- условное давление
- максимальная температура рабочей среды
- требуемый класс герметичности
- минимальная температура рабочей среды (если она, ниже величины по климатическому исполнению)
- материал корпуса
- специальное исполнение, если есть
- 👽 исходное положение крана при комплектации пневмоприводом
- присоединение к трубопроводу

ПРИМЕР УСЛОВНОГО ОБОЗНАЧЕНИЯ ШАРОВОГО КРАНА ПРИ ЗАКАЗЕ

«Кран шаровой РУСТ® 600-1 УХЛ(1), DN80, PN1,6 МПа, рабочая среда – пар, +150 °C, класс герметичности «А», 12X18H10T, H3, фланцевый.

ЗАДВИЖКА С ПАРООБОГРЕВОМ РУСТ® СЕРИИ 710

Задвижки РУСТ® серии 710 с возможностью парового обогрева корпуса и крышки применяются для отсечки потоков вязких жидких и/или кристаллизующихся сред.

ПРИМЕНЕНИЕ

Газовая, нефтяная и химическая промышленность; для работы в системах транспорта и переработки жидкой серы, нефти с высоким содержанием парафина.

DN – диаметр условного прохода, мм от 80 до 250

PN – условное давление, МПа

 T^{o} – температура рабочей среды, o С до +250

ПРЕИМУЩЕСТВА ПРИМЕНЕНИЯ ЗАДВИЖЕК С ПАРООБОГРЕВОМ СЕРИИ РУСТ® 710

Возможность парообогрева всех поверхностей корпуса и крышки

Благодаря специальной форме рубашки парообогрева корпус и крышка обогреваются практически по всей поверхности, включая поверхность фланцевых патрубков корпуса и сальника крышки. Это исключает образование зон кристаллизации по всем внутренним поверхностям задвижки.

Высокая стойкость запорной пары

Благодаря применению наплавки стеллита на уплотнительные поверхности седел и клина запорный узел имеет высокую стойкость против эрозии в загрязненных или химически активных средах, что позволяет длительно сохранять высокую степень герметичности задвижки.

▼ Применение терморасширенного графита в сальниковом узле

Применение в сальниковом узле уплотнительных колец из терморасширенного графита приводит к уменьшению сил трения в нем. Это ведет к уменьшению требуемого крутящего момента на маховике, а также минимизирует износ уплотнительной поверхности шпинделя, что, в свою очередь, гарантирует длительное сохранение герметичности сальникового узла.

ПРИНЦИП ДЕЙСТВИЯ ЗАДВИЖЕК С ПАРООБОГРЕВОМ СЕРИИ РУСТ® 710

Проточная часть задвижки (рис.28) состоит из корпуса (1) с седлами, крышки (2), запорного органа (клина 5), шпинделя (3) с трапецеидальной резьбой и сальникового уплотнения, состоящего из крышки сальника (9), колец уплотнительных (8) и кольца поднабивочного (14).

Ручной привод состоит из стойки (7), втулки резьбовой (6) подшипников (13), гайки (15), маховика (10), шайбы (16) и кольца стопорного (17). Маховик (10) соединяется с втулкой резьбовой (6) штифтом (18).

Закрытие производится вращением маховика (10) по часовой стрелке.

При вращении маховика и втулки резьбовой (6), вращательное движение преобразуется в поступательное движение шпинделя (3), и клин (5), соединенный со шпинделем, перемещается вниз. Движение происходит до полного соприкосновения рабочих поверхностей клина с седлами (4) корпуса задвижки, т.е. до перекрытия прохода.

Открытие производится вращением маховика против часовой стрелки, вращательное движение через резьбовую втулку преобразуется в поступательное движение шпинделя и клина вверх до упора в конусный бурт крышки (2).

Корпус задвижки выполнен с полостью для обогрева водяным паром. Подогрев корпуса необходим для работы задвижки при транспортировании вязких сред.

Крышка задвижки выполнена с полостью для обогрева водяным паром.

Подогрев крышки необходим для работы сальникового узла.

Подвод водяного пара для обогрева производится через патрубки на крышке (2) и корпусе (1). Конденсат из полостей подогрева отводится через отверстия, расположенные в нижней части крышки (2) и корпуса (1). Дренажные отверстия заглушены пробками (11).

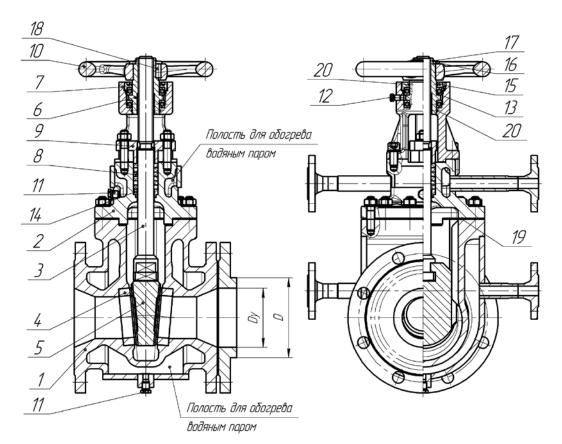


Рис. 28. Задвижка с обогревом

ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ ЗАДВИЖЕК С ПАРООБОГРЕВОМ СЕРИИ РУСТ® 710

Основные параметры задвижек приведены в таблице 17.

Максимально допустимые значения протечек в затворах задвижек в зависимости от класса герметичности и условного прохода – по ГОСТ 9544-2015. Присоединение задвижек к технологическому трубопроводу – фланцевое. Присоединительные размеры и размеры уплотнительных поверхностей специальные. Присоединение задвижек к паровой линии обогрева – фланцевое. Присоединительные размеры и размеры уплотнительных поверхностей по ГОСТ33259-2015 исполнение 1, ряд 2.

Уплотнением между корпусом и крышкой задвижки служат прокладки из паронита ПМБ 2 ГОСТ 481-80.

Сальниковое уплотнение штока задвижки – графлекс (терморасширенный графит).

Установочное положение задвижки: вертикально – маховиком вверх. При этом обеспечивается отвод парового конденсата из полостей обогрева через нижние дренажные отверстия.

Таблица 17

					Таблиц	
Наименование параметра	параметра Значение					
Условный проход DN/D, мм	80/100	100/150	150/200	200/250	250/300	
Условное давление PN, МПа			1,6			
Условный проход патрубка подвода водяного пара, мм	20					
Условное давление в полости парообогрева, МПа (кгс/см²)	0,6 1,0					
Строительная длина L, мм	230	266,5	302	330	362	
Высота Н, мм	418	487	620,5	771	921	
Диаметр маховика	250	250	300	350	400	
Число оборотов шпинделя для полного открытия задвижки (ориентировочно)	15	20	20	28	36	
Масса, кг	68,5	94	145	230	302	
Рабочие среды	Сре		• • • • • • • • • • • • • • • • • • • •	нефтепродукты, по аллизующиеся сро	•	
Диапазон температур рабочей среды, ^о С			до +1	50		
Диапазон температур окружающе	ей среды, °С для кл	иматического	о исполнения	по ГОСТ 15150-6	9	
/ (1)			от -40 до	+70		
УХЛ (1)			от -60 до	+70		

СТРУКТУРА УСЛОВНОГО ОБОЗНАЧЕНИЯ ЗАДВИЖЕК С ПАРООБОГРЕВОМ РУСТ® СЕРИИ 710

РУСТ®	710		X	XXX
	1	_	2	3

1	Тип клапана	710 – задвижка с рубашкой парообогрева					
2	Тип привода	2 – электропривод 3 – ручной привод					
3	Климатическое исполнение	У – (от -40 до +70) °С УХЛ(1) – (от -60 до +70) °С					

После условного обозначения должна следовать описательная часть со следующей информацией:

- У условный проход задвижки/линии парообогрева трубопровода DN/D, мм
- ▼ номинальное давление PN, кгс/см²
- максимальная температура рабочей среды
- материал корпуса

ПРИМЕР УСЛОВНОГО ОБОЗНАЧЕНИЯ ЗАДВИЖКИ ПРИ ЗАКАЗЕ

Задвижка РУСТ® 710-3 УХЛ(1), DN100/150, PN16, 150 °C, сталь 20ГЛ.

ЗАТВОР ДИСКОВЫЙ РУСТ® СЕРИИ 800

Затворы дисковые РУСТ® серии 800 предназначены для регулирования и/или отсечки потоков жидких или газообразных сред. В конструкцию затворов заложен принцип тройного эксцентриситета, который позволяет обеспечивать высокую герметичность даже для уплотнения «металл-металл». Это делает затворы серии 800 идеальным решением при применении в качестве запорных или запорно-регулирующих устройств, в случаях, когда недопустимо использование эластомеров или пластмасс.

ПРИМЕНЕНИЕ

Газовая, нефтяная, химическая, пищевая, энергетическая, металлургическая и другие отрасли промышленности; разнообразные рабочие условия.

DN – диаметр условного прохода, мм от 80 до 600

PN – условное давление, **МП**а от 2,5 до 25

T° – температура рабочей среды, °С от -196 до +450

ПРЕИМУЩЕСТВА ПРИМЕНЕНИЯ ЗАТВОРОВ ДИСКОВЫХ РУСТ® СЕРИИ 800

Отсечка по классам уплотнения «металл-металл»

Благодаря трехэксцентриковому принципу устройства и металлографитовому многослойному уплотнению затворы обеспечивают герметичность по классу A в широком диапазоне температур и применяются как для криогенных, так и для высокотемпературных сред. Кроме этого, уплотнение «металл-металл» позволяет использовать затворы в качестве регулирующей арматуры.

Малые масса и габариты

Характерны для всех затворов дисковых, в т.ч. трехэксцентриковых. Еще больше уменьшаются масса и габариты при применении стяжного присоединения к трубопроводу.

Высокие значения пропускной способности

За счет конструктивных особенностей затворы имеют высокое значение пропускной способности, что позволяет использовать их в качестве запорных устройств в случаях, когда требуется минимизировать гидравлические потери.

Ремонтопригодность

При демонтаже затвора с трубопровода возможно его техническое обслуживание и ремонт. Ремонт осуществляется за счет замены металлографитового седла и, в случае необходимости, диска.

ПРИНЦИП ДЕЙСТВИЯ ЗАТВОРОВ ДИСКОВЫХ РУСТ® СЕРИИ 800

Затворы дисковые построены по трехэксцентриковому принципу, который обеспечивает при открытии отвод уплотнительных поверхностей друг от друга без негативного взаимодействия (деформации, трения и т. п.). При закрытии также контакт поверхностей происходит только в самый последний момент. Такая кинематика движения обеспечивает уплотнению высокий ресурс срабатывания. Также для получения высокой герметичности в трехэксцентриковых затворах используется многослойное металлографитовое уплотнение. Такое уплотнение за счет упругости компенсирует неточности геометрии и обеспечивает плотное и герметичное прилегание уплотнительных поверхностей.

Затворы состоят из корпуса седла и диска, который при открытии вращается на угол 90° и открывает проход в седле. Корпус дискового затвора может быть выполнен фланцевым и бесфланцевым, под стяжку и под приварку. Диск устанавливается на вал, который опирается на подшипники, выполненные из специальных антифрикционных материалов. Материал диска – коррозионностойкая сталь с наплавкой стеллитом уплотнительной поверхности. Седло затвора устанавливается в корпус на прокладке и может быть легко демонтировано для замены. Седло выполняется в двух исполнениях: цельнометаллическое с наплавкой и металлографитовое. Сальник стандартно выполняется из терморасширенного графита, но могут быть установлены и другие материалы по согласованию с заказчиком.

ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ ЗАТВОРОВ ДИСКОВЫХ РУСТ® СЕРИИ 800

Наименование параметра	Значения
Номинальный диаметр, DN, мм	80, 125, 150, 200, 250, 300, 350, 400, 500, 600, 700
Номинальное давление, PN, МПа	2,5; 4; 6,3; 10; 16; 25
Рабочие среды	Газообразные и жидкие продукты, в т.ч. агрессивные и содержащие твердые включения, а также вязкие среды.
Температура рабочей среды, °С	Стандартное исполнение: от -60 до +350 Специальное исполнение: от -196 до +450
Климатическое исполнение	У (от -40 до +70)
(температура окружающей среды, °C)	УХЛ(1) (от -60 до +70)
Присоединение к трубопроводу	Фланцевое по ГОСТ, ANSI B16,5
Тип устанавливаемых приводов	Пневматические, с дублером или без Ручные Электрические (Стерх, AUMA и др.)
Материал корпуса	Стали: 25Л, 20ГЛ, 20ХНЗЛ, 20ГМЛ, 12Х18Н9ТЛ, 12Х18Н12МЗТЛ, 07Х20Н25МЗД2ТЛ Сплавы: 06ХН28МДТЛ, H65МФЛ, XH65МВЛ (Hastelloy C, B)
Материалы внутренних деталей	Стали: 20X13, ЭП410, ЭП222, 12X18H10T, 10X17H13M3T, ЭИ943, Nitrinic-60, 17-4PH Сплавы: XH65MB, Стеллит
Тип уплотнения	«Металл-металл» «Металл-металлографит»
Классы герметичности	По ГОСТ 9544-2015
Характеристика регулирования	Равнопроцентная модифицированная
Тип отсечки потока	Двухсторонняя
Минимальное время срабатывания	12, для стандартной комплектации
с пневматическим приводом, сек.	1-2, по запросу

ЗАПОРНАЯ И РЕГУЛИРУЮЩАЯ АРМАТУРА

Рис. 29. затвор дисковый РУСТ® серии 800

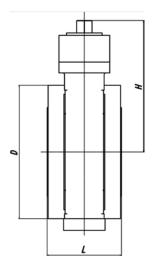


Рис. 30. Габаритные и присоединительные размеры затворов дисковых РУСТ® серии 800

ПРОПУСКНАЯ СПОСОБНОСТЬ ЗАТВОРОВ ДИСКОВЫХ РУСТ® СЕРИИ 800, Куу

_	_			-	_
ıs	hı	ΊИ	112	- 7	С

DN, mm				Угол от	гкрытия				
	10°	20°	30°	40°	50°	60°	70°	80°	90°
80	2,5	5	12,5	25	50	75	128	175	250
100	3,5	6,5	16	32	64	96	160	225	320
125	7	12,5	32	63	126	189	315	440	630
150	8	16	40	80	160	240	400	560	800
200	16	32	80	160	320	480	800	1120	1600
250	26	52	130	260	520	780	1300	1820	2600
300	37	74	185	370	740	1100	1850	2590	3700
350	52	104	260	520	1040	1560	2600	3640	5200
400	67	134	335	670	1340	2010	3350	4700	6700
500	100	200	500	1000	2000	3000	5000	7000	10000
600	180	360	900	1800	3600	5400	9000	12600	18000
700	250	500	1250	2500	5000	7500	12500	17500	25000

МАССЫ, ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ ЗАТВОРОВ ДИСКОВЫХ РУСТ® СЕРИИ 800 (БЕЗ ПРИВОДА¹)

DN, mm	PN, МПа	L, MM		D, мм	Н, мм	Масса, кг	
		фланцевый	стяжной			фланцевый	стяжной
80	4,0	-	60	130	318	-	34
125	1,6	200	70	240	267	45	25
150	1,6	210	76	270	293	53	32
200	1,6	230	89	330	358	86	52
	2,5		70	360	460	132	-
4,0 6,3	4,0	240	80	375	424	138	-
	6,3		100	405		156	-
	10		125	430	424	162	-
250	1,6	250	114	395	392	120	83
	6,3	300	-	500	474	242	-
300	1,6	270	114	450	418	155	108
	2,5		-	485	522	242	-
400	1,0	310	140	555	460	240	165
500	1,6	350	152	710	656	350	-
600	1,6	390	178	840	1000	600	-

¹ Размеры и массы затворов с приводами предоставляются по запросу

СТРУКТУРА УСЛОВНОГО ОБОЗНАЧЕНИЯ ЗАТВОРОВ ДИСКОВЫХ РУСТ® СЕРИИ 800

РУСТ®	X	X	X		Х	XXX
	1	2	3	_	4	5

1	Изделие	«8» – затвор дисковый
2	Номер серии	«0» – трехэксцентриковый
3	Тип	«0» – запорный «1» – регулирующий
4	Тип привода	«1» – пневмопривод «2» – электропривод «3» – ручной привод
5	Климатическое исполне- ние	У – (от -40 до +70) °C УХЛ(1) – (до -60 до + 70) °C

После условного обозначения должна следовать описательная часть со следующей информацией:

- диаметр условного прохода
- условное давление
- максимальная температура рабочей среды
- требуемый класс герметичности
- минимальная температура рабочей среды (если она ниже величины по климатическому исполнению)
- материал корпуса
- ♥ специальное исполнение, если есть
- исходное положение затвора при комплектации пневмоприводом
- присоединение к трубопроводу

ПРИМЕР УСЛОВНОГО ОБОЗНАЧЕНИЯ ЗАТВОРА ПРИ ЗАКАЗЕ

«Затвор дисковый РУСТ® 800-1 УХЛ(1), DN80, PN1,6 МПа, рабочая среда – пар, +150 °C, класс герметичности A, 12X18H10T, H3, фланцевый.

КЛАПАНЫ СЕГМЕНТНЫЕ РУСТ СЕРИИ 200

Клапаны сегментные РУСТ® серии 200 предназначены для регулирования или отсечки потоков жидких или газообразных сред. В конструкцию клапанов заложен принцип, по которому клапан в открытом положении становится идентичен диафрагме. Это делает клапаны серии 200 идеальным решением при применении для загрязненных, вязких и кристаллизующихся сред.

ПРИМЕНЕНИЕ

Газовая, нефтяная, химическая, пищевая, энергетическая, металлургическая и другие отрасли промышленности.

DN – диаметр условного прохода, мм

от 25 до 300

PN – условное давление, МПа

от 1,6 до 4

Т° – температура рабочей среды, °С

от -196 до +350

ПРЕИМУЩЕСТВА ПРИМЕНЕНИЯ СЕГМЕНТНЫХ КЛАПАНОВ РУСТ СЕРИИ 200

Для каждого размера клапана применяется набор седел, что обеспечивает достаточное количество значений пропускных способностей для получения качественного регулирования.

Надежное уплотнение вала

Для обеспечения надежности используется дублирование уплотнения вала

Повышенная прочность

Конструкция рассчитана на воздействие полного перепада давления (PN) на сегмент и вал соответственно.

Повышенная прочность

Клапаны обладают малой строительной длиной и массой благодаря тому, что корпус клапана не имеет разъемов, а монтаж и демонтаж внутренних деталей осуществляется через патрубки.

ПРИНЦИП ДЕЙСТВИЯ СЕГМЕНТНЫХ КЛАПАНОВ РУСТ® СЕРИИ 200

Клапаны сегментные серии 200 устроены таким образом, что в открытом положении становятся идентичны диафрагме. Это достигается за счет того, что сегмент опирается на две разнесенные относительно друг друга опоры. В открытом положении проходящий через седло поток не встречает никаких конструктивных элементов на своем пути. Эта особенность способствует увеличению пропускной способности клапана и полезна при работе с сильнозагрязненными и вязкими средами.

Клапаны состоят из корпуса седла и сегмента, который при открытии вращается на угол 90° и открывает проход в седле. При этом сегмент вращается относительно седла эксцентрично, обеспечивая движение рабочих поверхностей, относительно друг друга, без трения. Корпус сегментного клапана может быть выполнен с фланцевым и бесфланцевым, под стяжку и под приварку корпусом. Сегмент опирается на подшипники, выполненные из специальных антифрикционных материалов. Материал сегмента – коррозионностойкая сталь с наплавкой стеллитом уплотнительной поверхности. Седло клапана устанавливается в корпус на прокладке и может быть легко демонтировано для замены. Седло выполняется в двух исполнениях: цельнометаллическое с наплавкой и со вставкой из неметаллических материалов. Для повышения качества регулирования для каждого размера клапана применяется несколько размеров седел. Сальниковый узел включает в себя манжеты из фторопластовой композиции.

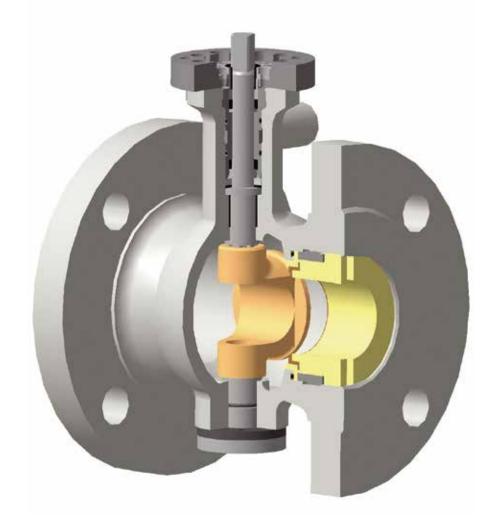


Рис. 31 Схема сегментного клапана РУСТ® серии 200

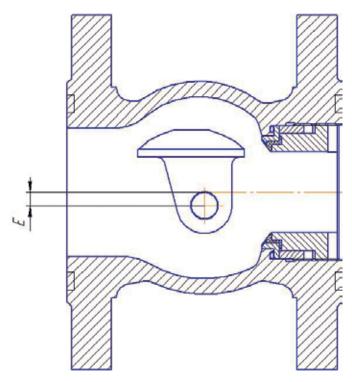
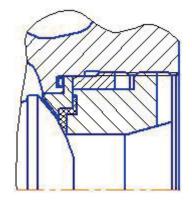


Рис. 32


ИСПОЛНЕНИЯ ОСНОВНОГО УПЛОТНЕНИЯ СЕГМЕНТНЫХ КЛАПАНОВ РУСТ® СЕРИИ 200

⊘ «Металл-неметалл»

Уплотнение «металл-неметалл» применяется для обеспечения высокой герметичности. В этом случае между седлом и обоймой устанавливается неметаллическая вставка, которая может быть легко заменена при обслуживании.

⊘ «Металл-металл»

Уплотнение «металл-металл» применяется для условий, когда не требуется высокого класса герметичности, и для высоких температур. Контактные поверхности наплавляются износостойким сплавом для обеспечения высокого ресурса уплотнения.

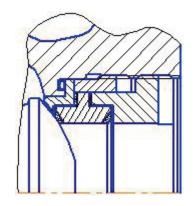


Рис. 33

ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ СЕГМЕНТНЫХ КЛАПАНОВ РУСТ® СЕРИИ 200

Таблица 21

	таолица 2
Наименование параметра	Значение
Условный диаметр, DN, мм	25; 32; 40; 50; 65; 80; 100; 125; 150; 200; 250; 300
Условное давление, PN, МПа	1,6; 2,5; 4,0; 5,0* * - соответствует классу 300 по ANSI
Рабочие среды	Газообразные и жидкие продукты, в том числе агрессивные и содержащие твердые включения, а также вязкие и кристаллизующиеся среды
Температура рабочей среды, °С	Стандартное исполнение: от - 60 до + 350 Специальные исполнения:от - 196 до + 450
Климатическое исполнение (температура окружающей среды, °C)	У (от -40 до +70) УХЛ(1) (от-60 до +70)
Присоединение к трубопроводу	Фланцевое по ГОСТ P54432-2011, ANSI B16.5 Стяжное (корпус без фланцев) приварное
Тип устанавливаемых приводов	Пневматические, с дублером или без Ручные Электрические (Стерх, AUMA и др.)
Материал корпуса	Стали: 25Л, 20ГЛ, 20ХНЗЛ, 20ГМЛ, 12Х18Н9ТЛ, 12Х18Н12МЗТЛ, 07Х20Н- 25МЗД2ТЛ Сплавы: 06ХН28МДТЛ, H65МФЛ, XH65МВЛ (Hastelloy C, B)
Материалы внутренних деталей	Стали: 20X13, ЭП410, ЭП222, 12X18H10T, 10X17H13M3T, ЭИ943, Nitronic-60, 17-4PH. Сплавы: XH65MB, Стеллит
Специальные исполнения	С рубашкой парообогрева Высокотемпературное Криогенное
Тип уплотнения	«металл-металл» «мягкое уплотнение»
Классы герметичности	По ГОСТ 9544-2015
Характеристика регулирования	Равнопроцентная модифицированная
Тип отсечки потока	Двухсторонняя
Минимальное время срабатывания с пневматическим приводом, сек.	12, для стандартной комплектации 1-2, по запросу

DN, mm		2				32			40			50		65		80	
Dc*, мм	10	12,5	15	20	15	20	25	20	25	32	25	32	40		40	50	63
Kv	4,0	6,3	10	16	10	16	25	16	25	40	25	40	63		63	100	160

DN, MM		100		125		150			200			250			300	
Dc*, мм	50	63	80		75	90	114	90	114	150	114	150	190	150	190	235
Kv	100	160	250		200	320	500	320	500	800	500	800	1250	800	1250	2000

^{*} Dc — диаметр седла

ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ СЕГМЕНТНЫХ КЛАПАНОВ РУСТ® СЕРИИ 200

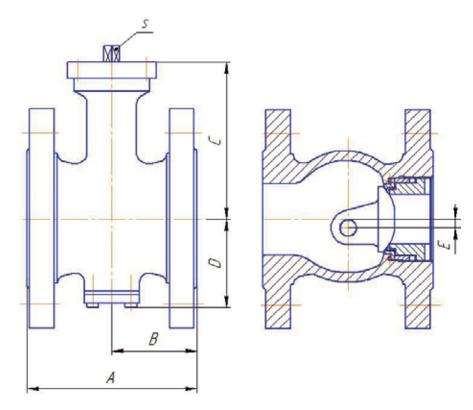


Рис. 34

DN, MM	А, мм	В, мм	С, мм	D, мм	Е, мм	Ѕ, мм	Тип присоединения привода по ISO 5211
25	102	51	114	52	4	9	F05
40	114	57	114	63	5	9	F05
50	124	62	114	65	6	9	F05
80	165	82,5	130	84	7	14	F07
100	194	97	150	90	8	17	F10
150	229	118	237	148	9	22	F12
200	243	131	254	160	10	27	F14
250	297	158	352	185	13	36	F16
300	338	156	352	204	15	36	F16

^{*} Размеры и массы клапанов с приводами предоставляются по запросу

СТРУКТУРА УСЛОВНОГО ОБОЗНАЧЕНИЯ СЕГМЕНТНЫХ КЛАПАНОВ РУСТ® СЕРИИ 200

РУСТ	X	X	X		X	XXX
	1	2	3	-	4	5

1	Изделие	«2» — клапан сегментный				
2	Номер серии	«0» — эксцентриковый				
	_	«0» — запорный				
3	Тип	«1» — регулирующий				
		«1» — пневмопривод				
4	Тип привода	«2» — электропривод				
		«3» — ручной привод				
5	V FLAMOTIAL DOLLO DE LA FLORIZA	У — (от - 40 до +70) °С				
5	Климатическое исполнение	УХЛ(1) — (от -60 до +70) °C				

После условного обозначения должна следовать описательная часть со следующей информацией:

- диаметр условного прохода, DN
- максимальная температура рабочей среды
- требуемый класс герметичности
- ✓ минимальная температура рабочей среды (если она ниже величины по климатическому исполнению)
- материал корпуса
- ♥ специальное исполнение, если есть
- условная пропускная способность и пропускная характеристика
- 👽 исходное положение клапана при комплектации пневмоприводом
- присоединение к трубопроводу

ПРИМЕР УСЛОВНОГО ОБОЗНАЧЕНИЯ ЗАТВОРА ПРИ ЗАКАЗЕ

Клапан сегментный РУСТ 201-1 УХЛ(1), DN80, PN1,6 МПа, рабочая среда — пар, +150 °C, класс герметичности IV, 12X18H10T, 125Л, H3, фланцевый.

КЛАПАН ОСЕВОЙ РУСТ® СЕРИИ 900

Регулирующие, запорные и запорно-регулирующие клапаны РУСТ® серии 900 построены по принципу осевого потока и предназначены для точного регулирования и/или отсечки потоков жидких и газообразных сред.

ПРИМЕНЕНИЕ

Газовая, нефтяная и химическая промышленность; для высоких давлений и перепадов, высоких пропускных способностей.

DN – диаметр условного прохода, мм от 80 до 500

PN – условное давление, МПа

от 6,3 до 40

Т° – температура рабочей среды, °С

ПРЕИМУЩЕСТВА ПРИМЕНЕНИЯ КЛАПАНОВ ОСЕВЫХ РУСТ® СЕРИИ 900

Массогабаритные характеристики

Благодаря осевой конструкции клапаны серии 900 имеют небольшой вес и размер, что упрощает их монтаж, демонтаж и техническое обслуживание.

Отсутствие у клапана крышки

При сборке внутренние детали клапана устанавливаются через один из его патрубков, поэтому пропадает необходимость в крышке клапана, а значит и в ревизии и обслуживании её крепежа и уплотнения.

Перестановочные усилия на штоке

Благодаря сбалансированной по давлению конструкции штока и плунжера клапана для приведения его в действие требуются незначительные усилия, даже при наличии высокого давления или перепада на клапане. Это позволяет использовать для клапанов серии 900 приводы малой мощности.

Двухсторонняя отсечка

Уплотнения плунжера клапана позволяют герметично перекрывать клапан при двухстороннем воздействии перепада.

Антишумовые и антиэрозионные свойства

Осевая форма проточной части клапана не оказывает значительного возмущающего воздействия на поток, что делает осевые клапаны менее шумными. И наоборот, спокойно продвигающийся по клапану поток не оказывает разрушительного воздействия на стенки корпуса и выходной участок трубопровода.

Пропускная способность

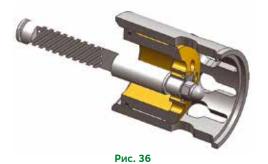
Корпус осевого типа обладает низким сопротивлением движению потока, а конструкция запорного/регулирующего узла позволяет выполнять клапан полнопроходным. Все вместе способствует увеличению пропускной способности клапанов серии 900.

ПРИНЦИП ДЕЙСТВИЯ КЛАПАНОВ ОСЕВЫХ РУСТ® СЕРИИ 900

В основе конструкции клапанов серии 900 лежит принцип осевого потока. В соответствии с этим принципом поток рабочей среды двигается вдоль оси клапана, обтекая срединное тело, в котором установлен регулирующий проходное сечение узел. Плунжер также двигается вдоль оси клапана, осуществляя перекрытие проходного сечения во втулке, перфорированной отверстиями определенной формы. Форма и размер отверстий определяют величину пропускной способности и пропускную характеристику клапана.

Перемещение плунжера клапана осуществляется реечной передачей, поворачивающей движение штока на угол в 90°. Реечный узел размещен в заполненной смазкой полости внутри срединного тела корпуса и защищен от воздействия рабочей среды уплотнениями, т.е. находится под атмосферным давлением. Рейки изготавливаются из специальных высокопрочных сталей, что в совокупности со смазкой обеспечивает их долговременную эксплуатацию.

Уплотнение штока выполняет дублирующую роль на случай, если выйдут из строя уплотнения реечного узла, и включается в работу после закрытия встроенной в корпус резьбовой пробки. Плунжер и перфорированная втулка выполняются из специальных материалов, исключающих их заклинивание.


Рис. 35

ТИПЫ КЛАПАНОВ ОСЕВЫХ РУСТ® СЕРИИ 900

ЗАПОРНО-РЕГУЛИРУЮЩИЕ И РЕГУЛИРУЮЩИЕ КЛАПАНЫ

Втулка клапана выполняется с отверстиями определенной формы и размера, которые определяют величину пропускной способности и тип пропускной характеристики (рис. 36).

ЗАПОРНЫЕ (ОТСЕЧНЫЕ) КЛАПАНЫ

Втулка клапана выполняется с максимальными по площади окнами, чтобы обеспечить минимальное сопротивление потоку (рис. 37).

СПЕЦИАЛЬНЫЕ ИСПОЛНЕНИЯ КЛАПАНОВ ОСЕВЫХ РУСТ® СЕРИИ 900

КАВИТАЦИОННОСТОЙКОЕ И АНТИШУМОВОЕ ИСПОЛНЕНИЯ

Для устранения кавитации в клапанах при эксплуатации на жидких продуктах, а также для уменьшения уровня шума при работе с газовыми средами применяется перфорация втулки мелкими отверстиями. Разбивание потока на тонкие струйки значительно ускоряет диссипацию энергии при дросселировании, за счет чего достигаются антишумовые и антикавитационные свойства клапана (рис. 38).

ЭРОЗИОННОСТОЙКОЕ ИСПОЛНЕНИЕ

Применяется при регулировании потоков химически агрессивных сред, когда для внутренних деталей клапана необходимо использование специальных материалов, стойких к высокоскоростному воздействию конкретной среды.

СЕРОВОДОРОДОСТОЙКОЕ ИСПОЛНЕНИЕ

Применяется при регулировании сред содержащих сероводород, когда для деталей клапана необходимо использование материалов в соответствии со стандартами NACE и др.

АБРАЗИВОСТОЙКОЕ ИСПОЛНЕНИЕ

Для увеличения стойкости внутренних деталей, при значительном содержании в рабочей среде абразива, их поверхности могут быть подвергнуты поверхностному упрочнению. Для неагрессивных сред все поверхности втулки плунжера и седла подвергаются азотированию. А для агрессивных сред применяется плазменное напыление керамических материалов.

Рис. 38

ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ КЛАПАНОВ ОСЕВЫХ РУСТ® СЕРИИ 900

Таблица 24

Наименование параметра	Значение
Условный диаметр, DN, мм	80; 100; 150; 200; 250; 300; 400; 500
Условное давление, PN, МПа	6,3; 10; 16 ; 25* ; 40*
Рабочие среды	Газообразные и жидкие продукты, в т.ч. агрессивные и содержащие твердые включения. За исключением особо вязких и кристаллизующихся сред
Температура рабочей среды, °С	от -60 до +100
Климатическое исполнение (температура окружающей среды, °C)	У (от -40 до +70) УХЛ(1) (от -60 до +70)
Присоединение к трубопроводу	Фланцевое по ГОСТ, ANSI B16.5
Тип устанавливаемых приводов	Пневматический Электрический (AUMA, Стерх и др.) Ручной
Материал корпуса	Стали: 25Л, 20ГЛ, 20ХНЗЛ, 20ГМЛ, 12Х18Н9ТЛ, 12Х18Н12МЗТЛ, 07Х20Н25МЗД2ТЛ Сплавы: 06ХН28МДТЛ, Н65МФЛ, ХН65МВЛ (Хастеллой С)
Материалы внутренних деталей	Стали: 20X13, ЭП410, ЭП222, 12X18H10T, 10X17H13M3T, ЭИ943 Сплавы: XH65MB, BT-3-1, Стеллит
Тип клапанов	Регулирующие Запорно-регулирующие Запорные
Специальные исполнения	Кавитационностойкое Антишумовое Абразивостойкое Эрозионностойкое Сероводородостойкое
Тип уплотнения	«Металл-металл» «Мягкое уплотнение»
Классы герметичности	По ГОСТ 9544-2015
Характеристика регулирования	Линейная Равнопроцентная
Направление потока	Двухстороннее
Минимальное время срабатывания (с пневматическим приводом), сек.	12 сек — стандартное, 1–2 сек — по заказу

^{*} по специальному заказу

ПРОПУСКНАЯ СПОСОБНОСТЬ КЛАПАНОВ ОСЕВЫХ РУСТ® СЕРИИ 900

Номинальный писмотр DN мм	Пропускная способность Куу (м³/ч) для клапанов
Номинальный диаметр, DN, мм	регулирующих и запорно-регулирующих	запорных
80	25, 32, 40, 50, 63, 80, 100, 125	160
100	40, 50, 63, 80, 100, 125, 160, 200	250
150	80, 100, 125, 160, 200, 250, 320, 400	500
200	125, 160, 200, 250, 320, 400, 500, 630	800
250	200, 250, 320, 400, 500, 630, 800, 1000	1250
300	320, 400, 500, 630, 800, 1000, 1250, 1600	2000
400	500, 630, 800, 1000, 1250, 1600, 2000, 2500	3200
500	800, 1000, 1250, 1600, 2000, 2500, 3200, 4000	5000

МАССЫ, ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ КЛАПАНОВ ОСЕВЫХ РУСТ® СЕРИИ 900 С ПНЕВМАТИЧЕСКИМИ И РУЧНЫМИ ПРИВОДАМИ РУСТ®

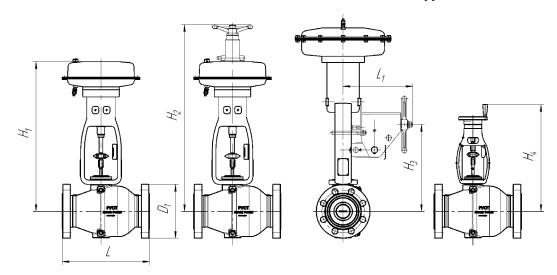


Рис. 39. Габаритные и присоединительные размеры клапанов осевых РУСТ® серии 900 с мембранными и ручными приводами

Таблица 26

DN, mm	PN, МПа	L, mm	L1, мм	D1, мм	Н1, мм	Н2, мм	Н3, мм	Н4, мм	Масса, кг
80	16	380	357	230	750	974	370	544	80
100	10-16	430	357	265	940	1055	535	607	129
150	10-16	550	357	350	985	1110	580	652	271

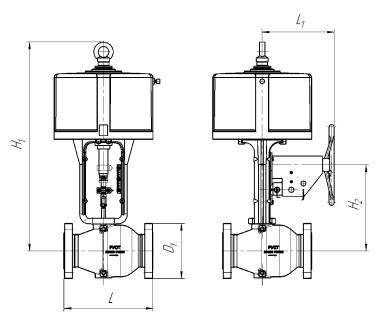


Рис. 40. Габаритные и присоединительные размеры клапанов осевых РУСТ® серии 900 с поршневыми приводами

DN, mm	PN, МПа	L, MM	D1, мм	L1, MM	Н1, мм	Н2, мм	Масса, кг
200	10-16	650	430	370	1108	502	440
250	6.3-16	700	500	370	1133	527	575
300	6.3-16	780	585	386	1311	612	925
400	6.3-15	1000	715	386	1391	692	1410
500	6.3	1200	800	-	2175	-	2600
	10-15	1334	855	-		-	2850

МАССЫ, ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ КЛАПАНОВ ОСЕВЫХ РУСТ® СЕРИИ 900 С ЭЛЕКТРОПРИВОДАМИ AUMA, СТЕРХ

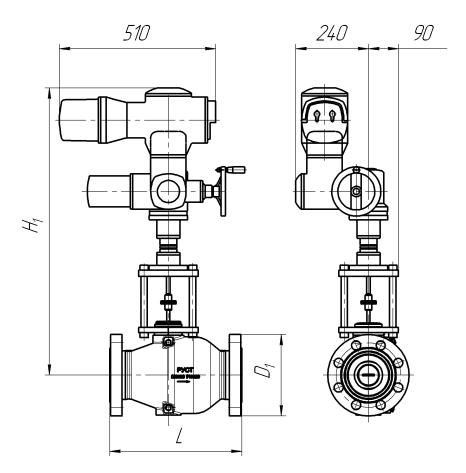


Рис. 41. Габаритные и присоединительные размеры клапанов осевых РУСТ® серии 900 с электроприводом AUMA

Таблица 28

DN, MM	PN, МПа	L, mm	D1, мм	Н1, мм	Масса, кг
80	16	380	230	1000	80
100	10-16	430	265	1090	120
150	10-16	550	350	1135	263
200	10-16	650	430	1200	515
250	6,3-16	700	500	1220	602
300	6,3-16	780	585	1265	887
400	6,3-15	1000	715	1300	1050

^{*} Электропривод на клапан Ду500 выбирается индивидуально

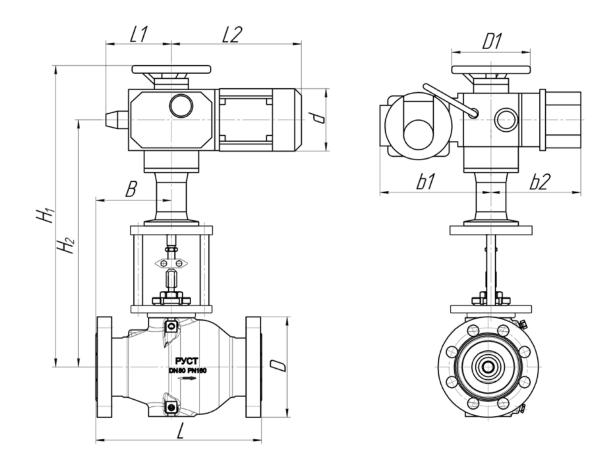


Рис. 42. Габаритные и присоединительные размеры клапанов осевых РУСТ $^{\otimes}$ серии 900 с электроприводом Стерх

DN, MM	L, мм	D, мм	D1, мм	d, мм	Н1, мм	Н2, мм	L1, мм	L2, мм	В, мм	b1, мм	b2, мм	Масса, кг
80	380	230	180	143	690	564	150	298	173	259	201	95
100	430	265			766	640			191			127
150	550	350			811	685			258			221
200	650	430	235	158	939	812	452	153 367	335,5	258	203	383
250	700	500			1042	915			315,5			524
300	780	585			1138	1011	153		462,5			726
400	1000	715			1209	1082			450			1329

^{*} Электропривод на клапан Ду500 выбирается индивидуально

СТРУКТУРА УСЛОВНОГО ОБОЗНАЧЕНИЯ КЛАПАНОВ ОСЕВЫХ РУСТ® СЕРИИ 900

РУСТ®	XXX		X	xxx
	1	_	2	3

1	Тип клапана	930— запорный 940— запорно-регулирующий 950— регулирующий
2	Тип привода	1 – пневматический 2 – электрический 3 – ручной
3	Климатическое исполнение	У – (от -40 до +70) °C УХЛ(1) – (от -60 до +70) °C

После условного обозначения должна следовать описательная часть со следующей информацией:

- условный проход клапана DN, мм
- максимальная температура рабочей среды
- требуемый класс герметичности
- материал корпуса
- условная пропускная способность и пропускная характеристика
- 🗸 исходное положение клапана при комплектации пневматическим приводом
- ♥ специальное исполнение, если предусмотрено

ПРИМЕР УСЛОВНОГО ОБОЗНАЧЕНИЯ КЛАПАНА ПРИ ЗАКАЗЕ

Запорно-регулирующий клапан РУСТ® 940-1 УХЛ(1), DN100, PN160, 150 °C, класс герметичности А, НЖ, Куу 200Л, НЗ.

ЗАЩИТНАЯ АРМАТУРА

СЕРИИ 960

КЛАПАН ОБРАТНЫЙ РУСТ® СЕРИИ 960

Клапаны обратные РУСТ® серии 960 построены по принципу осевого потока и предназначены для автоматического предотвращения обратного потока жидких и газообразных сред в трубопроводах.

ПРИМЕНЕНИЕ

Газовая, нефтяная и химическая промышленность; защита ротационного оборудования (насосов, компрессоров) от обратного раскручивания; защита емкостей от обратного потока и т. п.; трубопроводы средних и больших размеров; средние и высокие давления.

DN – диаметр условного прохода, мм от 80 до 700

PN – условное давление, **МП**а от 4 до 16

 T° – температура рабочей среды, ${}^{\circ}$ C от -60 до +100

ПРЕИМУЩЕСТВА ПРИМЕНЕНИЯ КЛАПАНОВ ОБРАТНЫХ РУСТ® СЕРИИ 960

Безударное закрытие

Благодаря осевой конструкции проточной части для открытия/закрытия клапана не требуется больших перемещений запирающего элемента (тарелки), что в совокупности с его малой массой не создает условий для сильного разгона тарелки и закрытия ее с ударом.

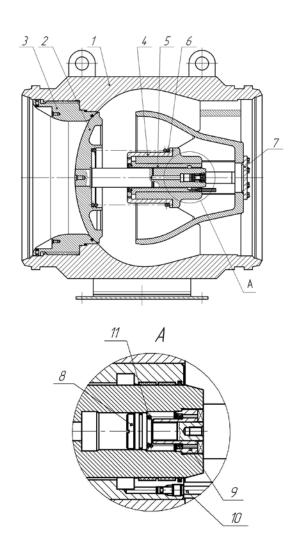
О Массогабаритные характеристики

Благодаря осевой конструкции и отсутствию необходимости в гидравлических демпферах обратный клапан имеет относительно небольшие размеры и массу, что упрощает монтаж, демонтаж, а также работы связанные с транспортировкой.

Минимальный перепад, требуемый для начала открытия затвора

Благодаря тому, что для осуществления возвратного движения тарелки достаточно пружины с небольшим усилием.

- ✓ Минимальный расход, требуемый для удержания клапана в полностью открытом положении Благодаря проточной части, спрофилированной с применением эффекта Вентури.
- Герметичность как у запорной арматуры


Достигается за счет установки вторичного мягкого уплотнения в седле клапана.

ПРИНЦИП ДЕЙСТВИЯ КЛАПАНОВ ОБРАТНЫХ РУСТ® СЕРИИ 960

Клапаны выполняются с патрубками под приварку или с приварными фланцами (рис. 43) и состоят из: корпуса 1, тарелки со штоком 2, седла 3, пружины 6, гильзы 4, втулки 5 и смазочного узла (смотри вид А). При отсутствии потока среды через клапан тарелка под действием пружины находится в положении «закрыто», то есть тарелка упирается в седло корпуса. При возникновении потока в прямом направлении тарелка под действием его динамического напора открывает проход через седло. При этом в полностью открытом положении внутри обтекателя за счет принципа Вентури создается разряжение, надежно удерживающее тарелку в открытом положении даже при небольших скоростях потока.

При остановке потока или изменении направления потока на противоположное происходит автоматическое закрытие клапана. При движении шток клапана скользит по установленным во втулке антифрикционным направляющим, которые могут работать даже в условиях «сухого» трения. Для улучшения плавности хода и качества срабатывания в конструкции предусмотрен встроенный в шток смазочный узел, который обеспечивает автоматическую подачу жидкой смазки к направляющим штока. Закачанной в узел смазки достаточно примерно для 1000 срабатываний клапана. Даже после опустошения смазочной емкости в узле смазки будет оставаться достаточное ее количество для надежной работы клапана на протяжении назначенного срока службы.

ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ КЛАПАНОВ ОБРАТНЫХ РУСТ® СЕРИИ 960

Таблица 30

Наименование параметра	Значение
Условный диаметр DN, мм	200, 250, 300, 400, 700
Условное давление PN, МПа	4, 8, 10, 16
Рабочие среды	Газообразные и жидкие продукты, в т.ч. агрессивные и содержащие твердые включения. За исклюением особо вязких и кристаллизующих сред
Диапазон температур рабочей среды, ^о С	от -60 до +100
Климатичекое исполнение	У (от - 40 до + 70)
(температура окружающей среды, °С)	УХЛ(1) (от - 60 до + 70)
Материал корпуса	Стали: 20ГМЛ, 12Х18Н8ТЛ, 09Г2С
Материалы внутренних деталей	Стали: 15Х13Л, 12Х18Н9ТЛ, ЭП410, 20Х13, 3П222
Тип уплотнения	«Металл-металл» «Мягкое уплотнение»
Класс герметичности затвора клапана	в соответствии с пунктом 7.5.3 СТО Газпром 2-4.1-212-2008
Ход клапана, мм (ориентировочный)	0,2*DN
Коэффициент гидравлического сопротивления клапана	4-5

Размеры фланцевого исполнения зависят от стандарта, по которому выполняются фланцы (ГОСТ, ANSI), и предоставляются по запросу

МАССЫ, ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ КЛАПАНОВ ОБРАТНЫХ РУСТ® СЕРИИ 960

Таблица 31

DN, mm	PN, МПа	D, мм	D 1, мм	D2, мм	D 3, мм	d, mm	Н, мм	Н1, мм	L, мм	L1, мм	L2, мм	L3, мм	Масса, кг
250	10-16	170	356	236	278	20	211	408,5	520	260	226	270	185
300	10-16	190	478	285	330	22	275	525	750	375	-	-	310
400	4	280	476	398	430	22	265	583	560	280	294	340	356,5
400	10	280	715	-	-	22	265	583	962	481	294	340	795
700	8	470	840	688	730	22	505	1035	1000	500	500	550	1985

Остальные размеры предоставляются по запросу

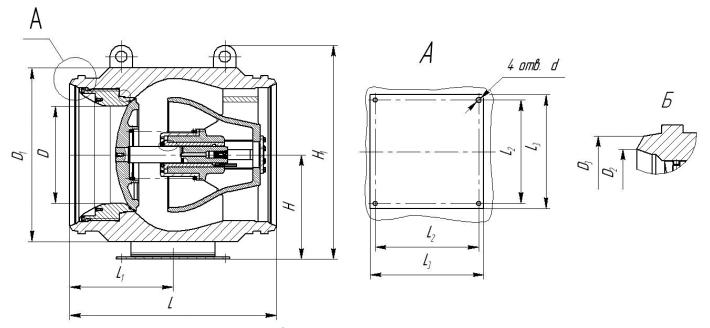


Рис. 45. Габаритные и присоединительные размеры клапанов обратных РУСТ® серии 960

СТРУКТУРА УСЛОВНОГО ОБОЗНАЧЕНИЯ КЛАПАНОВ ОБРАТНЫХ РУСТ® СЕРИИ 960

РУСТ	xxx	_	XXX
	1		2

1	Тип клапана	960 - клапан обратный осевой
2	K DIAMATALIACYOA IACDODUALIAA	У – (от -40 до +70) °C УХЛ(1) – (до -60 до + 70) °C

После условного обозначения должна следовать описательная часть со следующей информацией:

- условный проход
- условное давление
- максимальная температура рабочей среды
- ▼ требуемый класс герметичности
- материал корпуса
- тип установки клапана: надземная; подземная
- присоединение к трубопроводу: фланцевое; под приварку

ПРИМЕР УСЛОВНОГО ОБОЗНАЧЕНИЯ КЛАПАНА ПРИ ЗАКАЗЕ

Клапан обратный РУСТ® 960-УХЛ(1), DN700, PN80, +80 $^{\circ}$ C, CTO Газпром 2-4.1-212-2008, 09Г2C, установка надземная, под приварку.

РЕГУЛЯТОРЫ ДАВЛЕНИЯ

СЕРИЯ 100

РЕГУЛЯТОР ДАВЛЕНИЯ СЕРИЙ РД 110 И 120

Регуляторы давления серий 110 и 120 представляют собой регулирующие устройства прямого действия. Регуляторы предназначены для автоматического поддержания заданного значения давления рабочей среды в трубопроводе «до» или «после» регулятора.

ПРИМЕНЕНИЕ

Газовая, нефтяная и химическая промышленность; для применения на технологических линиях с жидкими и газообразными средами, для тестирования арматуры, в пневматических системах и многое другое.

DN – диаметр условного прохода, мм от 15 до 50

PN – условное давление, МПа

от 1,6 до 4

 T^{o} – температура рабочей среды, o C от -60 до +150

Типы регуляторов серии 100

РД 110 – «после себя»

РД 120 - «до себя»

- Высокая скорость срабатывания благодаря тому, что чувствительным и приводящим в действие является один и тот же элемент конструкции – мембрана.
- ▼ Компактность и простота конструкции обеспечивают надежность и удобство при эксплуатации.
- Защита конструкции от превышения контролируемого давления обеспечивается прочными, выполненными из стали корпусными деталями регуляторов, выдерживающими превышение контролируемого давления вплоть до условного давления входного трубопровода.

УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ РЕГУЛЯТОРОВ ДАВЛЕНИЯ «ПОСЛЕ СЕБЯ» СЕРИИ РД 110

Регуляторы давления «после себя» серии 110 предназначены для автоматического поддержания заданного значения давления рабочей среды в трубопроводе после регулятора.

Регулятор давления РД 110 (рис.46) состоит из корпуса 1, крышек 2 и 8, редукционного органа, што-ка 5 с резиновым кольцом 24, установленного в направляющей 10, мембранной сборки, настроечной части, втулки направляющей 6, установленной в подшипниках 9, возвратной пружины 7, трубки 11. Крышка 2 крепится к корпусу 1 при помощи шпилек 21 и гаек 22, или болтами 23. Редукционный орган включает в себя седло 3 и тарелку 4. Мембранная сборка состоит из опоры 12, мембраны 13 с диском 14 или без него, жесткого центра 15 и гайки 16. В настроечную часть входит пружина 17, опора 18, винт регулировочный 19 и гайка 20.

Принцип работы регулятора давления «после себя» РД 110 заключается в следующем:

В исходном состоянии, при полностью вывернутом регулировочном винте 19, тарелка 4 закрывает седло 3 при помощи пружины 7. При закручивании регулировочного винта 19 сжимается настроечная пружина 17, образуя силу, которая через мембранную сборку посредством штока 5, тарелки 4 и втулки 6 сравнивается с силой возвратной пружины 7. Когда сила пружины 17 превышает силу возвратной пружины 7, тарелка 4 опускается, открывая седло 3. Среда с входным давлением проходит через отверстие в седле 3, понижаясь до определенного значения выходного давления. Среда с выходным давлением через трубку 11 попадает в полость под мембраной 13, образуя при этом силу, которая через мембранную сборку также сравнивается с силой пружины 17.

При уменьшении выходного давления ниже настройки пружина 17 преодолевает силы от выходного давления и пружины 7, вследствие чего тарелка опускается ниже, увеличивая проходное сечение. Расход через редукционный орган увеличивается до тех пор, пока давление на выходе не станет равным настройке. При повышении выходного давления выше настройки регулятор закрывается.

Настройка требуемого давления на выходе регулятора производится при помощи регулировочного винта 19. При настройке изменяется сила настроечной пружины 17, следовательно, и выходное давление всего регулятора.

УСТРОЙСТВО И ПРИНЦИП ДЕЙСТВИЯ РЕГУЛЯТОРОВ ДАВЛЕНИЯ «ДО СЕБЯ» СЕРИИ РД 120

Регуляторы давления «до себя» серии 120 предназначены для автоматического поддержания заданного значения давления рабочей среды в трубопроводе до регулятора.

Регулятор давления РД 120 (рис. 47) состоит из корпуса 1, крышек 2 и 7, редукционного органа, што-ка 5 с подшипниками скольжения 8, мембранной сборки, настроечной части, втулки направляющей 6. Крышка 2 крепится к корпусу 1 при помощи шпилек 17 и гаек 18. Редукционный орган включает в себя седло 3 и тарелку 4. Мембранная сборка состоит из опоры 9, мембраны 10, жесткого центра 11 и гайки 12. В настроечную часть входит пружина 13, опора 14, винт регулировочный 15 и гайка 16.

Принцип работы регулятора давления «до себя» РД 120 заключается в следующем:

В рабочем состоянии закрученный регулировочный винт 15 сжимает пружину 13 на величину эквивалентную настройке входного давления. При помощи силы, появляющейся в результате сжатия пружины, тарелка 4 через мембранную сборку посредством штока 5 закрывает седло 4.

Среда с входным давлением через отверстие в корпусе 1 попадает в полость под мембраной 10, обра-

зуя при этом силу, которая через мембранную сборку противодействует силе настроечной пружины 13.

Когда сила от входного давления превышает силу пружины 13, тарелка 4 поднимается, открывая седло 3. Происходит сброс избытка среды до тех пор, пока давление на входе не станет равным настройке. При давлении на входе ниже настройки регулятор закрыт.

Настройка требуемого давления на входе регулятора производится при помощи регулировочного винта 15. При настройке изменяется сила настроечной пружины 13, следовательно, и входное давление в регулятор.

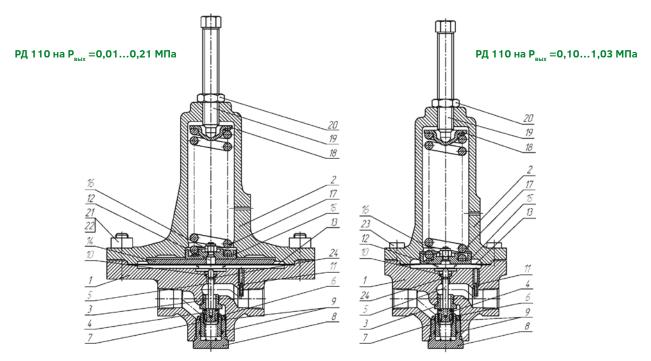


Рис.46. Конструкция регулятора давления РД 110



Рис. 47. Конструкция регулятора давления РД 120

ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ РЕГУЛЯТОРОВ ДАВЛЕНИЯ СЕРИИ РД 110 И 120

Основные параметры регуляторов РД 110 и 120

Таблица 32

Наименование параметра	Значение					
Условный диаметр (DN), мм	15	20	25	40	50	
Условная пропускная способность (Kvy), м³/ч	1,6	4		12		
Условное давление (PN), МПа	1,6; 2,5; 4					
Рабочая среда	Газы и жидкос	ги, в т.ч. агресси	вные			
Температура рабочей среды (t), °С	От -60 до +15	0				
Диапазон настройки регулируемого давления: Выходного для РД серии 110, МПа; Входного для РД серии 120, МПа.	, , , ,	От 0,01 до 1,03 От 0,03 до 1,20				
Аварийное поднятие регулируемого давления, безопасное для корпуса регулятора	До PN	До PN				
Климатическое исполнение по ГОСТ 15150-69	, , , , , , , , , , , , , , , , , , , ,	У – (от -40 до +70) УХЛ(1) – (от -60 до + 70)				
Материал корпуса и крышки	Стали: 25Л, 20	Стали: 25Л, 20ГЛ, 12Х18Н9ТЛ, 12Х18Н12М2ТЛ, 20ГМЛ				
Герметичность затвора регулятора давления	Соответствует	Соответствует классу А или классу В герметичности по ГОСТ 9544-2015				
Присоединение к технологическому трубопроводу		– Муфтовое. Резьба внутренняя коническая дюймовая по ГОСТ 6111-52 – Фланцевое по ГОСТ				

Диапазоны настройки давления в выходном трубопроводе ($P_{\scriptscriptstyle Bыx}$) для регуляторов давления серии РД 110

Таблица 33

DN, mm	PN, МПа	Р _{вых} , МПа	Диапазоны Р _{вых} , МПа		
			0,01 – 0,035		
15; 20; 25	1,6; 2,5; 4	0,01 - 0,21			
			0,09 – 0,21		
			0,10 - 0,21		
15; 20; 25	1,6; 2,5; 4	0,10 – 1,03	0,17 – 0,52		
			0,48 – 1,03		
			0,03 - 0,10		
40; 50	1.6. 2.5. 4	0.02 1.02	0,09 – 0,21		
	1,6, 2,5, 4	1,6; 2,5; 4 0,03 – 1,03 0,11			
			0,48 – 1,03		

Диапазоны настройки давления во входном трубопроводе ($P_{_{\rm BX}}$) для регуляторов давления серии РД 120

Таблица 34

			таолица 34		
DN, MM	PN, MΠa	Р _{вх} , МПа	Диапазоны Р _{вх} , МПа		
			0,05 – 0,25		
15	1,6; 2,5; 4	0,05 – 1,2			
			0,65 – 1,20		
			0,05 – 0,25		
20; 25	1,6; 2,5; 4	0,05 – 1,2	0,2 - 0,7		
			0,65 – 1,20		
			0,03 – 0,20		
40; 50	1.6. 2.5. 4	0.03 1.3	0,15 – 0,35		
	1,6; 2,5; 4	0,03 – 1,2	0,3 - 0,7		
			0,65 – 1,20		

Диапазон настройки указывается при заказе регулятора и маркируется на табличке, прикрепленной к его корпусу

МАССЫ, ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ РЕГУЛЯТОРОВ ДАВЛЕНИЯ СЕРИИ РД 110 И 120

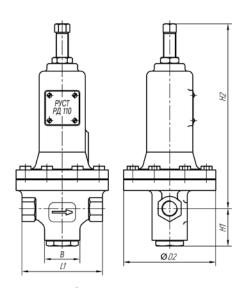


Рис. 48. Габаритные размеры регулятора давления РД 100 муфтового исполнения

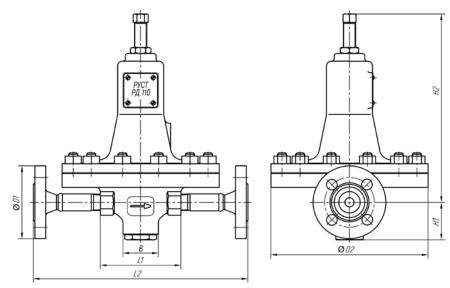


Рис. 49. Габаритные размеры регулятора давления РД 100 фланцевого исполнения

ГАБАРИТНЫЕ РАЗМЕРЫ РЕГУЛЯТОРОВ ДАВЛЕНИЯ СЕРИИ РД 110 И 120

Таблица 35

DN, mm	PN, МПа	Р _{вых} (Р _{вх}), МПа	L1, мм	L2, мм	D1, мм	D2, мм	Н1, мм	H2 _{max} , мм	В, мм
15	1 6. 2 5. 4	0,01 – 0,21	105	280	95	205	50	280	46
15	1,6; 2,5; 4	0,10 (0,03) - 1,03 (1,2)	105	280	95	120	50	275	46
20	20 1,6; 2,5; 4	0,01 - 0,21	120	360	105	285	63	352	60
20		0,10 (0,03) - 1,03 (1,2)	120	360	105	160	63	352	60
25	1.6.2.5.4	0,01 – 0,21	120	360	115	285	63	352	60
25	1,6; 2,5; 4	0,10 (0,03) - 1,03 (1,2)	120	360	115	160	63	352	60
40	1,6; 2,5; 4	0,03 (0,03) - 1,03 (1,2)	185	360	145	235	82	453	86
50	1,6; 2,5; 4	0,03 (0,03)1,03 (1,2)	185	360	160	235	82	453	86

МАССА РЕГУЛЯТОРОВ ДАВЛЕНИЯ СЕРИИ РД 110 И 120

Таблица 36

DN	DN MDs	р (р.) мпа	Maco	:а, кг
DN, MM	PN, МПа	Р _{вых} (Р _{вх}), МПа	муфтовый	фланцевый
15	4.6.25.4	0,01 – 0,21	11,3	13
15	1,6; 2,5; 4	0,10 (0,03) – 1,03 (1,2)	5,8	7,5
20	16.25.4	0,01 – 0,21	28,4	30,7
20	1,6; 2,5; 4	0,10 (0,03) – 1,03 (1,2)	18,4	20,7
25	1,6; 2,5; 4	0,01 – 0,21	28,4	31,4
25		0,10 (0,03) – 1,03 (1,2)	18,4	21,4
40	1,6; 2,5; 4	0,03 (0,03) – 1,03 (1,2)	45,2	50,1
50	1,6; 2,5; 4	0,03 (0,03) – 1,03 (1,2)	45,2	51,8

СТРУКТУРА УСЛОВНОГО ОБОЗНАЧЕНИЯ РЕГУЛЯТОРОВ ДАВЛЕНИЯ СЕРИИ РД 110 И 120

РД	XXX	_	XXX
	1		2

1	Тип регулятора	110 – «после себя» 120 – «до себя»		
2	Климатическое исполнение по ГОСТ 15150-69	У – (от -40 до +70) °C УХЛ(1) – (от -60 до +70) °C		

После условного обозначения должна следовать описательная часть со следующей информацией:

- диаметр условного прохода DN
- материал корпуса регулятора
- диапазон настройки регулируемого давления

ПРИМЕР УСЛОВНОГО ОБОЗНАЧЕНИЯ РЕГУЛЯТОРА ПРИ ЗАКАЗЕ

РД 110-У DN25, PN4, с корпусом из стали 25Л, с диапазоном настройки (0,17-0,52) МПа.

ФИЛЬТРЫ СЕТЧАТЫЕ

СЕРИИ: ФС Ү-обр. типа, ФС конусного типа, ФС Т-обр. типа

ФИЛЬТР СЕТЧАТЫЙ Ү-ОБРАЗНОГО ТИПА СЕРИИ ФС

Фильтры сетчатые Y-образного типа серии ФС предназначены для очистки от механических частиц потоков жидких и газообразных сред.

ПРИМЕНЕНИЕ

Газовая, нефтяная и химическая промышленность; для постоянной защиты от попадания загрязнений в насосы, клапаны, расходомеры и другие ответственные элементы трубопроводных систем; для временной очистки потоков после проведения ремонтных работ на трубопроводах и установках.

DN – диаметр условного прохода, мм

от 25 до 300

PN – условное давление, МПа

от 1,6 до 16

T° – температура рабочей среды, °С

от -196 до +500

ПРЕИМУЩЕСТВА ФИЛЬТРОВ СЕТЧАТЫХ Ү-ОБРАЗНОГО ТИПА СЕРИИ ФС

Возможность прямой стыковки фильтра и защищаемого элемента

При приобретении фильтра можно заказать несимметричное исполнение фланцев корпуса фильтра, что позволит установить его непосредственно перед защищаемым от загрязнений изделием, без дополнительных переходных элементов.

Увеличенный допустимый перепад на фильтре

Конструкция фильтроэлементов включает в себя прочную перфорированную отверстиями обечайку, внутрь которой устанавливается фильтрующая сетка. Такая обечайка воспринимает все нагрузки, связанные с воздействием на фильтроэлемент потока, особенно высокие в случае сильного засорения сетки.

Широкий выбор размера фильтрации

Заказчику предоставляется возможность широкого выбора размера ячейки фильтрующей сетки при заказе изделия. В случае невозможности подбора сетки в качестве фильтрующего материала могут использоваться нетканые материалы, например из фторопласта, полипропилена и др.

⊘ Возможность установки магнитных элементов

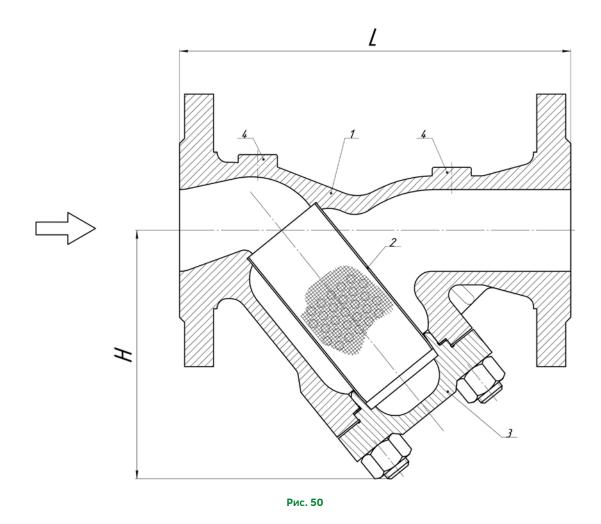
В конструкции Y-образного фильтра предусмотрена возможность установки магнитов, задерживающих на себе металлические частицы и увеличивающие, таким образом, фильтрующую способность фильтра.

Возможность подключения манометров

В конструкции Y-образного фильтра предусмотрена возможность выполнения отверстий для подключения манометров с целью определения перепада давления на фильтре для оценки его загрязненности.

Возможность быстрой очистки фильтра

В конструкции Y-образного фильтра предусмотрена возможность выполнения дренажного отверстия в крышке, через которое осуществляется сброс скопившихся загрязнений без снятия с корпуса фильтра крышки.



ПРИНЦИП ДЕЙСТВИЯ ФИЛЬТРОВ СЕТЧАТЫХ У-ОБРАЗНОГО ТИПА СЕРИИ ФС

Y-образные сетчатые фильтры серии состоят из литого фланцевого или с концами под приварку корпуса (рис. 50, поз. 1), фильтроэлемента (рис. 50, поз. 2) и крышки (рис. 50, поз. 3), закрепляемой на корпусе при помощи шпилек. Фильтроэлемент, установленный в корпусе и закрепленный при помощи крышки, выполняется в виде двухслойного полого цилиндра, наружный слой которого – перфорированная большими отверстиями обечайка из коррозионностойкой стали, а внутренний слой – мелкоячеистая тканая сетка из коррозионностойкой проволоки.

Поток, проходя через фильтроэлемент, поворачивает, и крупные частицы загрязнений за счет сил инерции попадают в полость крышки. Более мелкие частицы не пропускаются сеткой фильтроэлемента. Скопившаяся грязь удаляется при снятии с корпуса крышки и фильтроэлемента. Для того чтобы загрязнения надежно удерживались в полости крышки, фильтр устанавливают крышкой вниз.

На корпусе фильтра выполняются приливы (рис. 50, поз. 4), в которых могут быть выполнены резьбовые отверстия для подключения регистрирующих давление приборов.

ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ ФИЛЬТРОВ СЕТЧАТЫХ Ү-ОБРАЗНОГО ТИПА СЕРИИ ФС

Таблица 37

Наименование параметра	Значение
Условный диаметр, DN, мм	25; 50; 80; 100; 150; 200; 250; 300
Условное давление, PN, МПа	1,6; 2,5; 4; 6,3; 10; 16
Рабочие среды	Газообразные и жидкие продукты, в т.ч. агрессивные. За исключением особо
	вязких и кристаллизующихся сред
Температура рабочей среды, °С (в зависимости от материала корпуса)	от -196 до +500
Климатическое исполнение	У (от -40 до +70)
(температура окружающей среды, °С)	УХЛ(1) (от -60 до +70)
Присоединение к трубопроводу	Фланцевое по ГОСТ, в т.ч. несимметричные исполнения
присоединение к груоопроводу	Приварное
	Стали: 25Л, 20ГЛ, 20ХНЗЛ, 20ГМЛ, 12Х18Н9ТЛ, 12Х18Н12МЗТЛ,
Материал корпуса	07Х20Н25М3Д2ТЛ
	Сплавы: 06ХН28МДТЛ, Н65МФЛ, ХН65МВЛ (Hastelloy C)
	Обечайка: 12Х18Н10Т, 10Х17Н13М3Т, ЭИ943, ХН65МВ
Материалы фильтроэлемента	Фильтрующий слой: сетка из 12Х18Н10Т, пористый полипропилен, пористый
	фторопласт

ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ ФИЛЬТРОВ СЕТЧАТЫХ Y-ОБРАЗНОГО ТИПА СЕРИИ ФС (ПЕРЕМЕННЫЕ ОТ DN)

Таблица 38

Условный диаметр, Dn, мм		25	50	80	100	150 200 250			300
Условное давление, Pn, Мпа	давление, Рп, Мпа 1,6; 2,5; 4,0; 6,3; 10,0; 16,0								
Условная пропускная способ-	Нормальная ячейка (5,0-0,25мм)	16,0	63,0	160,0	250,0	570,0	1000,0	1500,0	2200,0
ность Кvy, м³/ч, для размера ячейки, мм	Мелкая ячейка (0,2-0,04мм)	15,0	61,0	140,0	215,0	410,0	750,0	1100,0	1700,0
Максимально допустимый пере фильтре, кгс/см ²	пад давления на	12,0	10,0	8,0	6,0	4,0 2,			2,5

Таблица 39

Диаметр прохода, DN, мм	Размер резьбового отверстия в крышке
25, 50	K1/4"
80, 100	K1/2"
150, 200	K1"
250, 300	K1¹/₂"

МАССЫ, ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ ФИЛЬТРОВ СЕТЧАТЫХ Y-ОБРАЗНОГО ТИПА СЕРИИ ФС

Таблица 40

DN, mm	PN, МПа	L, mm	D, мм	Н, мм	Н1, мм	В, мм	Масса, кг
	1,6; 2,5; 4	160	115	00	150	5	4
25	6,3		105	98	170	-	7
	10; 16	230	135	133	197	5	8,5
	1,6; 2,5; 4	230	160	150	221	22	30
50	6,3	200	175	170	251	_	16
	10; 16	300	195	184	281	23	25
	1,6; 2,5; 4	310	195	210	300	65	18
80	6,3	200	210	223	310	44	23
	10; 16	380	230	264	345	65	36
	1,6	250	215	267	265		20
100	2,5; 4	350	230	267	365	55	30
100	6,3	430	250	258	355	_	42
	10; 16		265	292	310	-	65
	1,6	400	280	24.4	445	15	60
450	2,5; 4	480	300	314	415	15	60
150	6,3	550	340	323	450	18	86
	10; 16	550	350	310	420	_	130
	1,6		335				
200	2,5	600	360	410	530	_	130
200	4		375				
	6,3	650	405	431	555	24	160
	1,6		405	310	435	-	312
250	2,5	730	425	462,5	580	5	
	4		445	452,5	575	_	
	1,6	050	460			F2	335,5
300	2,5	850	485	615	740	52	356
	4	980	510			_	403

Примечание: Прочерк в графе В, мм, означает, что в случае демонтажа узла «крышка+фильтр-элемент» данная сборка не выходит за габарит L

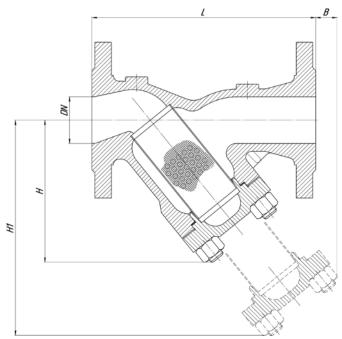


Рис. 51. Габаритные и присоединительные размеры фильтров сетчатых Y-образного типа серии ФС

ФИЛЬТР СЕТЧАТЫЙ КОНУСНОГО ТИПА СЕРИИ ФС

Фильтры сетчатые конусного типа серии ФС предназначены для очистки от механических частиц потоков жидких и газообразных сред.

ПРИМЕНЕНИЕ

Газовая, нефтяная и химическая промышленность; для постоянной защиты от попадания загрязнений в насосы, клапаны, расходомеры и другие ответственные элементы трубопроводных систем; для временной очистки потоков после проведения ремонтных работ на трубопроводах и установках.

DN – диаметр условного прохода, мм от 200 до 500

PN – условное давление, МПа

от 1,6 до 16

T⁰ – температура рабочей среды, °С

от -196 до +500

ПРЕИМУЩЕСТВА ФИЛЬТРОВ СЕТЧАТЫХ КОНУСНОГО ТИПА СЕРИИ ФС

Возможность прямой стыковки фильтра и защищаемого элемента

При приобретении фильтра можно заказать несимметричное исполнение фланцев корпуса фильтра, что позволит установить его непосредственно перед защищаемым от загрязнений изделием, без дополнительных переходных элементов.

Увеличенный допустимый перепад на фильтре

Конструкция фильтроэлементов включает в себя прочную перфорированную отверстиями обечайку, внутрь которой устанавливается фильтрующая сетка. Такая обечайка воспринимает все нагрузки, связанные с воздействием на фильтроэлемент потока, особенно высокие в случае сильного засорения сетки.

Широкий выбор размера фильтрации

Заказчику предоставляется возможность широкого выбора размера ячейки фильтрующей сетки при заказе изделия. В случае невозможности подбора сетки в качестве фильтрующего материала могут использоваться нетканые материалы, например из фторопласта, полипропилена и др.

Уменьшенные массогабаритные характеристики

Благодаря осевой конструкции конические фильтры имеют малые размеры и вес. Фактически вес фильтра сопоставим с весом фланцевой катушки такой же длины.

Возможность использования фильтра в качестве фланцевой катушки

Конструкция конусного фильтра такова, что в случае отсутствия необходимости фильтрования потока достаточно демонтировать из корпуса фильтроэлемент, чтобы преобразовать фильтр во фланцевую катушку той же строительной длины.

ПРИНЦИП ДЕЙСТВИЯ ФИЛЬТРОВ СЕТЧАТЫХ КОНУСНОГО ТИПА СЕРИИ ФС

Конусные фильтры сетчатые серии ФС состоят из сварного фланцевого корпуса осевого типа (рис. 52 поз. 1) и фильтроэлемента в форме усеченного конуса (рис. 52 поз. 2).

Корпус выполняется из трубной заготовки, двух фланцев и опоры фильтроэлемента.

Фильтроэлемент выполняется в виде двухслойного полого усеченного конуса с дном на меньшем диаметре. Наружный слой фильтроэлемента – перфорированная большими отверстиями обечайка из коррозионностойкой стали, а внутренний слой – мелкоячеистая тканая сетка из коррозионностойкой проволоки.

Фильтроэлемент фиксируется в корпусе при помощи винтов, прижимающих его больший диаметр к одному краю корпуса. Меньший диаметр опирается на опору с другой стороны корпуса.

При прохождении потока через фильтр частицы загрязнений задерживаются сеткой фильтроэлемента. Скопившаяся грязь удаляется при снятии фильтра с трубопровода.

В случае если фильтр требуется временно, можно демонтировать фильтроэлемент из корпуса и использовать фильтр как катушку. Строительная длина изделия при этом не изменяется.

ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ ФИЛЬТРОВ СЕТЧАТЫХ КОНУСНОГО ТИПА СЕРИИ ФС

Таблина 41

Наименование параметра	Значение
Условный диаметр, DN, мм	200; 250; 300; 350; 400; 500
Условное давление, PN, МПа	1,6; 2,5; 4; 6,3; 10; 16
Рабочие среды	Газообразные и жидкие продукты, в т.ч. агрессивные. За исключением особо вязких и кристаллизующихся сред
Температура рабочей среды, ${}^{\circ}$ С (в зависимости от материала корпуса)	от -196 до +500
Климатическое исполнение	У (от -40 до +70)
(температура окружающей среды, °С)	УХЛ(1) (от -60 до +70)
Присоединение к трубопроводу	Фланцевое по ГОСТ
Материал корпуса	Стали: 20, 09Г2С, 20ЮЧ, 12Х18Н10Т, 10Х17Н13М2Т
Материалы фильтроэлемента	Обечайка: 12X18H10T, 10X17H13M3T; Фильтрующий слой: сетка из 12X18H10T

ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ ФИЛЬТРОВ СЕТЧАТЫХ КОНУСНОГО ТИПА СЕРИИ ФС (ПЕРЕМЕННЫЕ ОТ DN)

Таблица 42

Условный диаметр, Dn, мм		25	50	80	100	150	200	250	300
Условное давление, Pn, Мпа	1,6; 2,5; 4,0; 6,3; 10,0; 16,0								
Условная пропускная способ- ность Куу, м³/ч, для размера ячейки, мм	Нормальная ячейка (5,0-0,25мм)	16,0	63,0	160,0	250,0	570,0	1000,0	1500,0	2200,0
	Мелкая ячейка (0,2-0,04мм)	15,0	61,0	140,0	215,0	410,0	750,0	1100,0	1700,0
Максимально допустимый перепад давления на фильтре, кгс/см²		12,0	10,0	8,0	6,0		4,0	2,5	

МАССЫ, ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ ФИЛЬТРОВ СЕТЧАТЫХ КОНУСНОГО ТИПА СЕРИИ ФС

Таблица 43

DN, mm	PN, МПа	L, мм	D, мм	Масса, кг
200	10,0; 16,0	738	430	145; 152
250	6,3; 10,0; 16,0	852	470; 500; 500	180; 238; 250
300	1,6; 2,5; 4,0; 6,3; 10,0; 16,0	1100	460; 485; 510; 530; 585; 585	136; 156; 189; 239; 355; 416
350	1,6; 2,5; 4,0; 6,3; 10,0;	1175	520; 550; 570; 595; 655	162; 212;250; 331; 500
400	1,6; 2,5; 4,0; 6,3; 10,0;	1220	580; 610; 655; 670; 715	227; 267; 341; 422; 614
500	1,6; 2,5; 4,0; 6,3	1250	710; 730; 755; 800	346; 379; 449; 684

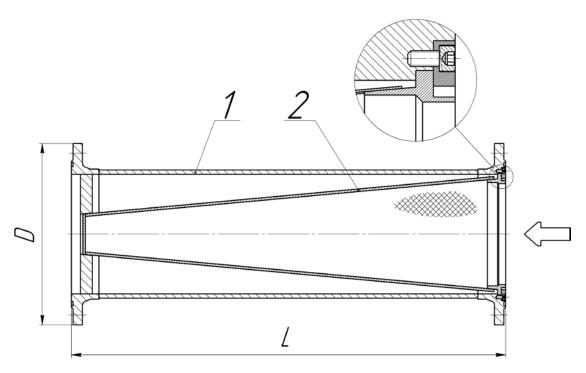


Рис. 53. Габаритные и присоединительные размеры фильтров сетчатых конусного типа серии ФС

СТРУКТУРА УСЛОВНОГО ОБОЗНАЧЕНИЯ ФИЛЬТРОВ СЕТЧАТЫХ, Y-ОБРАЗНОГО И КОНУСНОГО ТИПА СЕРИИ ФС

ФС	Χ	Χ	Χ		Χ	Χ
1	2	3	4	-	5	6

1	Тип фильтра	ФС – с фильтрующей сеткой				
2	Условный диаметр – $\mathbf{D}_{\mathbf{y}}$ (мм)	25; 50; 80; 100; 150; 200; 250; 300; 400; 500				
3	Материал корпуса	С – сталь углеродистая; НЖ – сталь нержавеющая; ХЛ – низколегированная хладостойкая; М – сталь нержавеющая молибденосодержащая; Д – другая марка*				
4	Давление среды – Р _у (кгс/см²)	16; 25; 40; 63; 100; 160				
5	Размер ячейки в сетке, мм	0,2; 0,4; 0,5; 0,63; 0,8; 1; 1,2; 1,6				
6	Климатическое исполнение по ГОСТ 15150 - 69	У — минус 40+70; УХЛ(1) — минус 60+70; Т — минус 10+85				

Далее указывается тип фильтра (Ү-образный или конусный).

• Материал корпуса, если он зашифрован буквой «Д»

ПРИМЕР УСЛОВНОГО ОБОЗНАЧЕНИЯ ФИЛЬТРА ФС

Описание: Фильтр сетчатый D D_y = 80 мм, P_y = 4,0 МПа, с корпусом из стали 25Л, с размером ячейки в сетке 0,8 мм, климатическое исполнение – У, Y- образный.

Обозначение при заказе: «Фильтр сетчатый ФС 80 С 40 – 0,8 У, Y- образный, ТУ 3742-002-41554973-98»

ФИЛЬТР СЕТЧАТЫЙ Т-ОБРАЗНОГО ТИПА СЕРИИ ФС

Фильтры сетчатые Т-образного типа серии ФС предназначены для очистки от механических частиц потоков жидких и газообразных сред.

ПРИМЕНЕНИЕ

Газовая, нефтяная и химическая промышленность; для постоянной защиты от попадания загрязнений в насосы, клапаны, расходомеры и другие ответственные элементы трубопроводных систем; для временной очистки потоков после проведения ремонтных работ на трубопроводах и установках.

DN – диаметр условного прохода, мм

от 15 до 25

PN – условное давление, МПа

от 1,6 до 32

T^o – температура рабочей среды, ^oC

от -60 до +225

ПРЕИМУЩЕСТВА ФИЛЬТРОВ СЕТЧАТЫХ Т-ОБРАЗНОГО ТИПА СЕРИИ ФС

Возможность прямой стыковки фильтра и защищаемого элемента

При приобретении фильтра можно заказать несимметричное исполнение фланцев корпуса фильтра, что позволит установить его непосредственно перед защищаемым от загрязнений изделием, без дополнительных переходных элементов.

Увеличенный допустимый перепад на фильтре

Конструкция фильтроэлементов включает в себя прочную перфорированную отверстиями обечайку, внутрь которой устанавливается фильтрующая сетка. Такая обечайка воспринимает все нагрузки, связанные с воздействием на фильтроэлемент потока, особенно высокие в случае сильного засорения сетки.

Широкий выбор размера фильтрации

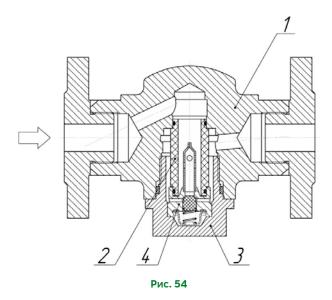
Заказчику предоставляется возможность широкого выбора размера ячейки фильтрующей сетки при заказе изделия. В случае невозможности подбора сетки в качестве фильтрующего материала могут использоваться нетканые материалы, например из фторопласта и др.

Высокая степень фильтрации рабочей среды

Благодаря использованию фильтроэлементов размером в несколько микрон достигается надежная отчистка рабочей среды от мельчайших загрязнений.

Легкость в эксплуатации

Благодаря использованию высококачественных материалов при изготовлении данного фильтра. Фильтроэлемент, извлечённый из корпуса, может быть подвергнут очистке отдельно, с применением любых чистящих средств.

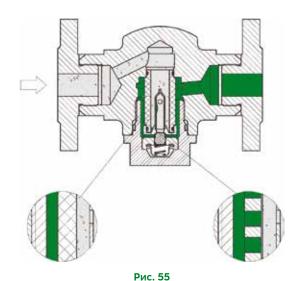

ПРИНЦИП ДЕЙСТВИЯ ФИЛЬТРОВ СЕТЧАТЫХ Т-ОБРАЗНОГО ТИПА СЕРИИ ФС

Фильтры Т-образного типа серии ФС состоят из штампованного корпуса с фланцевым или муфтовым присоединением (рис. 54,поз. 1). По заказу возможно изготовление корпусов с концами под приварку. Фильтры с микрорасходом серии ФС отличаются высокой степенью отчистки рабочей среды от механических примесей. Степень отчистки потока определяется размером пор или ячеек в сетке фильтроэлемента.

Фильтроэлемент (рис. 54,поз. 2) устанавливается в корпус и прижимается крышкой (рис. 54, поз. 3). Для предотвращения разрушения фильтроэлемента при превышении перепада давления на нем или при гидравлическом ударе в конструкции предусмотрен предохранительный клапан (рис. 54, поз. 4).

При прохождении потока через фильтр частицы загрязнений задерживаются фильтрующей сеткой фильтроэлемента. Скопившаяся грязь удаляется при снятии с корпуса крышки и фильтроэлемента. Для того чтобы загрязнения надежно удерживались в полости крышки, фильтр устанавливают крышкой вниз.

Удаление загрязнения возможно обратным движением рабочей среды, которое используется, например, для прочистки фильтроэлемента обратным током с продувкой через специальный дренаж.


ОСОБЕННОСТИ ИСПОЛНЕНИЙ ФИЛЬТРОВ СЕТЧАТЫХ Т-ОБРАЗНОГО ТИПА СЕРИИ ФС

Фильтроэлемент имеет два варианта исполнения. Один вариант выполняется в виде двухслойного полого цилиндра, наружный слой которого – перфорированная большими отверстиями обечайка из коррозионностойкой стали, а внутренний слой – мелкоячеистая тканая сетка из коррозионностойкой проволоки. Второй вариант – целиковый фильтроэлемент из пористого фторопласта.

Таблица 44

Тип фильтра	Размер пор или ячейки в сетке, мкм
Пористый фторопласт	20
Comingrativity	40
Сетчатый фильтр	80

ФИЛЬТРОЭЛЕМЕНТ ИЗ ПОРИСТОГО ФТОРОПЛАСТА

Фильтрация осуществляется за счёт прохождения рабочей среды сквозь пористый материал. При этом достигается наибольшая степень отчистки рабочей среды.

ФИЛЬТРОЭЛЕМЕНТ ИЗ МЕЛКОЯЧЕИСТОЙ СЕТКИ, УСИЛЕННОЙ ПЕРФОРИРОВАННОЙ ОБЕЧАЙКОЙ

Фильтрация осуществляется с помощью мелкоячеистой сетки. При высокой степени отчистки рабочей среды достигается высокая пропускная способность.

ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ ФИЛЬТРОВ СЕТЧАТЫХ Т-ОБРАЗНОГО ТИПА СЕРИИ ФС

Таблица 45

Значение				
15; 20; 25				
1,6; 2,5; 4; 6,3; 10; 16; 25; 32				
Газообразные и жидкие продукты, в т.ч. агрессивные. За исключением особо вязких и кристаллизующихся сред				
от -60 до +225				
У (от -40 до +70)				
УХЛ(1) (от -60 до +70)				
Фланцевое по ГОСТ, ANSI B16.5, в т.ч. несимметричные исполнения				
Муфтовое				
Приварное (по заказу)				
Стали: 09Г2С, 12Х18Н10Т				
Обечайка: 12Х18Н10Т				
Фильтрующий слой: сетка из 12Х18Н1ОТ, пористый фторопласт				
0,02 (20); 0,04 (40); 0,08 (80)				

ПЕРЕМЕННЫЕ ОТ DN

Таблица 46

Диаметр прохода DN, мм	15 20 25				
	0,02	0,8			
Условная пропускная способность Kvy, м³/ч, для размера ячейки, мм	0,04	1,4			
для размера яченки, мм	0,08	1,4			
Макс. допустимый перепад давления на фильтре, кгс/см²	4				

МАССЫ, ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ ФИЛЬТРОВ СЕТЧАТЫХ Т-ОБРАЗНОГО ТИПА СЕРИИ ФС

Таблица 47

DN	DN ME-	_1		Масса, кг				
DN, mm	PN, МПа	d	L1*	L2	D1	H1	H2	
	1,6; 2,5; 4		164 (166)		95	112		5,78
15	6,3	_	170	_	105	117	64	6,4
15	10; 16		172		105	117		6,5
	25; 32	K 1/2", G1/2"	_	130	_	64	_	4,1
	1,6; 2,5; 4		164 (166)		105	117		5,31
20	6,3	_	178	_	125	127	64	7,18
20	10; 16		176		125			7,20
	25; 32	K 3/4", G3/4"	_	130	_	64	_	4,1
	1,6; 2,5; 4	_	164 (166)	_	115	122	64	5,61
25	6,3		178		135	135	67,5	7,48
23	10; 16		176		135	135	67,5	7,50
	25; 32	K 1", G1"	_	130	_	64	_	4,1

^{*} Размер варьируется в зависимости от типа присоединительных фланцев

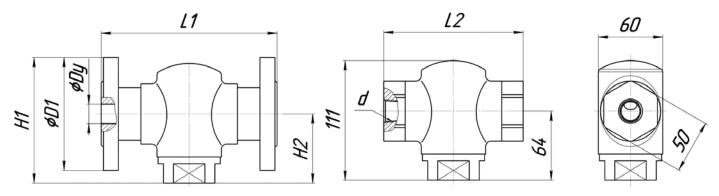


Рис. 55. Габаритные и присоединительные размеры фильтров сетчатых Т-образного типа серии ФС

СТРУКТУРА УСЛОВНОГО ОБОЗНАЧЕНИЯ ФИЛЬТРОВ СЕТЧАТЫХ Т-ОБРАЗНОГО ТИПА СЕРИИ ФС

РУСТ®	ФС	_	Х	XXX	XXX
	1		2	3	4

1	Тип изделия	ФС – фильтр сетчатый			
2	Тип фильтра	Т – Т-образный			
3	Размер ячейки сетки, (размер фильтрации), мм	От 0,02 до 0,08			
4	Климатическое исполнение	У – (от -40 до +70) °С			
4	по ГОСТ 15150-69	УХЛ(1) – (от -60 до +70) °C			

Далее должна следовать описательная часть с указанием DN, PN, материала корпуса фильтра.

ПРИМЕР УСЛОВНОГО ОБОЗНАЧЕНИЯ ФИЛЬТРА ПРИ ЗАКАЗЕ

Описание: Фильтр сетчатый Т-образный DN15, PN100, с размером ячейки сетки 0,08 мм, климатическое исполнение – У.

Обозначение при заказе: Фильтр РУСТ® ФС-Т 0,08У DN15, PN100. ТУ 3742-002-41554973-98

ПРИБОРЫ

СЕРИИ: ЭПК 300, РДФ 300, КВД 610, ВКВ

ЭЛЕКТРОПНЕВМАТИЧЕСКИЙ КЛАПАН ЭПК 300 ВЗРЫВОЗАЩИЩЕННЫЙ

Электропневматический клапан (ЭПК) представляет собой модульный ряд клапанов с базовым электромагнитным клапаном прямого действия и набором пневматических блоков для пилотного управления, блокировок и подготовки воздуха.

ПРИМЕНЕНИЕ

Преобразование двоичного электрического сигнала в пневматический для управления пневматическими приводами пружиновозвратного и двойного действия отсечной и регулирующей трубопроводной арматуры на взрывоопасных производствах. Применяется для систем дистанционного управления с центральных пультов, блокировок, ПАЗ, и т.д.

ПРЕИМУЩЕСТВА ПРИМЕНЕНИЯ ЭПК 300

- ▼ Модульный конструктив обеспечивает беструбное соединение пневматических элементов и позволяет комбинировать/адаптировать ЭПК 300 для решения разнообразных задач управления пневмоприводом
- 🛇 Взрывозащита вида «взрывонепроницаемая оболочка» с маркировкой 1ExdIIC T6 Gb
- ▼ Большой выбор соленоидов и встроенный выпрямитель тока позволяют использовать ЭПК со всеми стандартами электропитания
- У Компактный размер сборок и простота монтажа
- Работа при температурах от -60 °C
- У Ручной дублер в базовом исполнении позволяет принудительно подать/стравить воздух в/из привода, когда отсутствует электропитание (ПНР, авария и др.)
- ✓ Использование очищенного и осушенного природного газа в качестве импульсного

ПРИНЦИП ДЕЙСТВИЯ ЭПК 300

ЭПК 300.01 - это трехпортовый (3/2) электромагнитный клапан прямого действия нормально закрытый. Он является основным элементом клапанов серии ЭПК 300. Для решения необходимых задач управления пневмоприводами ЭПК комплектуется соответствующими пневмоблоками.

ЭПК 300.01 состоит из электромагнитной катушки 60 (рис. 56), установленной на разделительную трубку 2. Разделительная трубка имеет седло «К» и проходной канал для сброса воздуха в атмосферу, защищенный сапуном 13. Внутри трубки расположен подвижный сердечник 1 с резиновыми клапанами на торцах. Пружина 16 прижимает сердечник к седлу «И», закрывая входной канал, при этом седло «К» открыто и выходной канал связан с атмосферой. Ручной привод 18 обеспечивает срабатывание клапана при отсутствии электрического сигнала. На корпусе имеется маркировка «О» и «З», соответствующая открытому и закрытому положениям входного канала. При подаче электрического сигнала на электромагнитную катушку 60 сердечник 1 притягивается к седлу «К» разделительной трубки, занимая крайнее верхнее положение. Седло «И» открывается, соединяя входной и выходной каналы, а седло «К» закрывается, разрывая связь выходного канала с атмосферой.

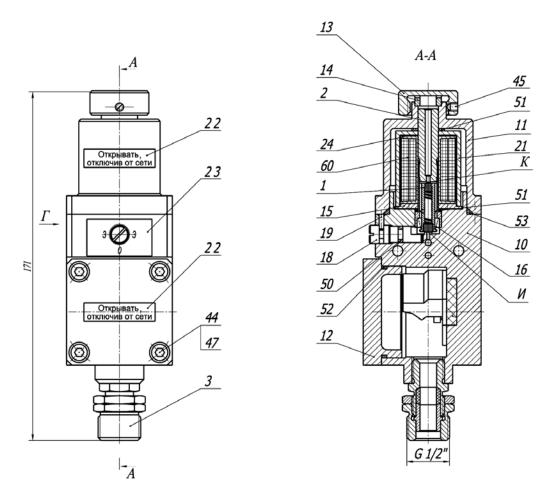


Рис.56 Конструкция и габариты ЭПК 300.01

БЛОК ЭПК 300.100 - УПРАВЛЕНИЕ ПРИВОДОМ ОБЪЕМОМ МЕНЕЕ 1 ЛИТРА

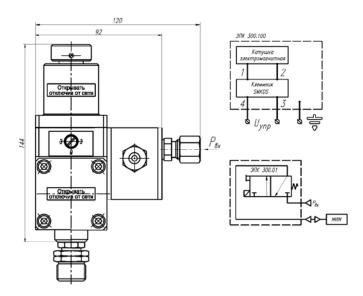


Рис. 57

ЭПК300.100 (рис. 57) состоит из модуля ЭПК 300.01 и адаптерной платы АП 100. ЭПК 300.01 представляет собой электропневматический клапан с прямым электромагнитным управлением, трехпортовый двухпозиционный (3/2), нормально закрытый с ручным дублером. Адаптерная плата АП 100 представляет собой моноблок с двумя вводами для штуцеров G1/8 и четырьмя отверстиями для соединения с ЭПК 300.01 и кронштейном крепления на пневмоприводе. Один из штуцерных вводов обеспечивает подключение редуктора давления РДФ 300.

БЛОК ЭПК 300.110 - УПРАВЛЕНИЕ ПРИВОДОМ ОБЪЕМОМ МЕНЕЕ 5 ЛИТРОВ

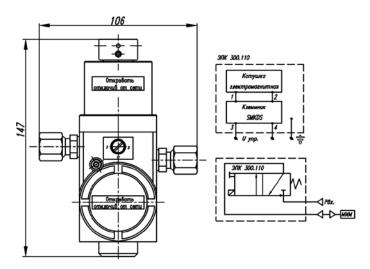


Рис. 58

ЭПК 300.01 (рис. 58) представляет собой электропневматический клапан с прямым электромагнитным управлением, трехпортовый двухпозиционный (3/2), нормально закрытый с ручным дублером и с двумя вводами для штуцеров G1/8. На корпусе имеются два отверстия для соединения с кронштейном пневмопривода. Основное отличие от ЭПК 300.100 состоит в том, что у ЭПК 300.110 увеличен условный проход, что позволяет управлять пневмоприводами без дополнительных пневматических модулей.

БЛОК ЭПК 300.300, ЭПК 300.301 - УПРАВЛЕНИЕ ПРИВОДОМ НЗ/НО ОБЪЕМОМ БОЛЕЕ 5 ЛИТРОВ

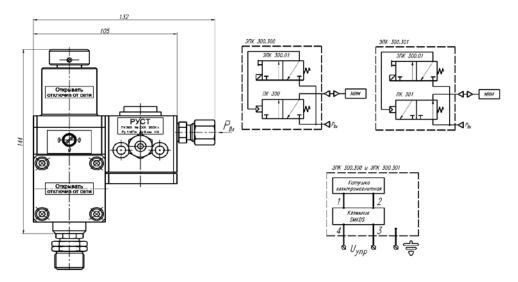


Рис. 59

ЭПК 300.300, ЭПК 300.301 (рис. 59) состоит из ЭПК 300.01 и ПК 300 (НЗ) или ПК 301 (НО). При этом соединение с ЭПК 300.01 и кронштейном крепления на клапан осуществляется через соответствующее отверстие в ПК с помощью винтов М5х30 и М6х55. Один из штуцерных вводов в ПК обеспечивает модульное подключение РДФ 300. Герметизация стыка между ЭПК и ПК осуществляется с помощью резиновых колец. При данной модульной сборке блоки используются для управления запорными клапанами.

БЛОК ЭПК 300.200 УПРАВЛЕНИЕ ПРИВОДОМ ЗАПОРНОГО КЛАПАНА С ФИКСАЦИЕЙ ПОЛОЖЕНИЯ ШТОКА КЛАПАНА ПРИ АВАРИЙНОМ ОТКЛЮЧЕНИИ ПНЕВМОПИТАНИЯ НОРМАЛЬНО-ЗАКРЫТЫМ ЭПК 300

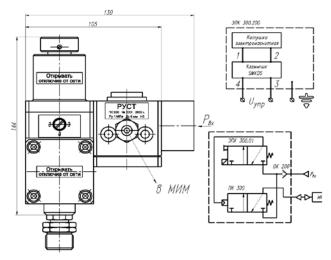
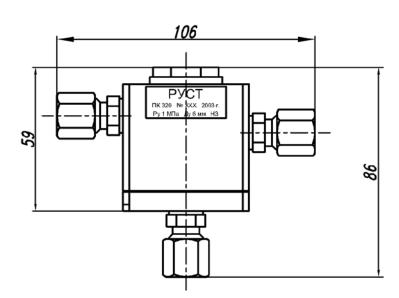
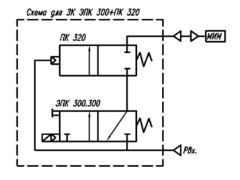


Рис. 60


Дополнительное введение обратного клапана ОК 200 в ЭПК 300.300 (рис. 60) обеспечивает мгновенную остановку запорного клапана, запирая линию питания при аварийном отключении. При восстановлении питания ЗК начинает движение от уровня аварийной остановки. Также имеется возможность сброса ЗК в нулевое положение отключением электропитания. При необходимости ОК 200 обеспечивает модульное подключение РДФ 300.



БЛОК ПК 320 — ФИКСАЦИЯ ПРИВОДОВ РЕГУЛИРУЮЩИХ ИЛИ ЗАПОРНО-РЕГУЛИРУЮЩИХ КЛАПАНОВ ПРИ АВАРИЙНОМ ОТКЛЮЧЕНИИ (ОБРЫВЕ) ПНЕВМОПИТАНИЯ, ПРИМЕНЯЕТСЯ КАК С ЭПК, ТАК И С ЭПП И С ПП

Блок ПК 320 предназначен для остановки регулирующего или запорно-регулирующего клапана при аварийном отключении (обрыве) пневмопитания. При отключении Р_{вх} перекрывается линия связи с пневматическим исполнительным механизмом, и привод останавливается в текущем положении, при возобновлении подачи пневмопитания Рвх линия связи с исполнительным механизмом восстанавливается, и движение возобновляется из точки остановки.

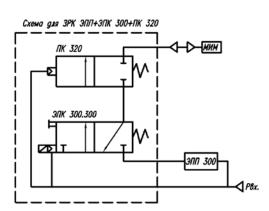


Рис. 61. Габариты и пневмосхема ПК 320

ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ ЭПК 300

Таблица 48

Наименование		эпкзоо.100	ЭПК300.110	ЭПК 300.310 ЭПК 300.311	ЭПК 300.300 ЭПК 300.301	эпкзоо.200	ПК 320		
Состав изделия		ЭПК 300.01 АП 100	ЭПК300.110	ЭПК 300.01, ПК310, АП300, ПК311	ЭПК 300.01, ПК300,ПК301	ЭПК300.01, ПК300,ОК200	ПК 320		
Рабочее давление, МПа			от 0 до 1			от 0,03 до 1			
Условный проход, DN, мм		1,5	3		6				
Класс загрязненности воздуха		1, 3			1, 3, 5				
Максимальный расход, м³/ч		0,6	6		12				
Диапазон утечек, см³/мин		0	,3		0,6				
Пневматическое подключение				G 1/8, GE08LR 1/8 A3	C (Parker)				
	Α		=24 B ± 10 % до 4 Вт ~24 B ± 10 % до 4 ВА						
Напряжение питания и потреб-	В	=48 B ± 10 % до 5 Вт ~48 B ± 10 % до 6 ВА							
ляемая мощность	С		=110 B ± 10 % до 10 Вт ~110 B ± 10 % до 15 ВА						
	D	=220 B ± 10 % до 10 Вт ~220 B ± 10 % до 15 ВА					•		
Кабельное соединение		M20x1,5 BKB040 сталь							
Уровень взрывозащиты		1ExdIICT6Gb –							
Уровень пылевлагозащиты		IP65							
Время непрерывной работы		100%							
Материал корпуса		Алюминиевый сплав, анодированный							
Климатическое исполнение		УХЛ 1, от -60 до +60 °C, Относительная влажность воздуха при t=35 °C 95%							
Масса, кг		1	1	1,3	1,5	1,4	0,5		

РЕДУКТОР ДАВЛЕНИЯ С ФИЛЬТРОМ РДФ 300

Редуктор давления с фильтром (далее РДФ) предназначен для очистки воздуха от механических примесей, сбора конденсата, регулирования и автоматического поддержания заданного уровня выходного давления для питания пневматических приборов. Кроме воздуха могут применяться другие газы, не влияющие на работоспособность нитрильных резин.

ПРИМЕНЕНИЕ

Подготовка воздуха (газа) для пневматических систем требовательных к чистоте воздуха и стабильному уровню давления в сети.

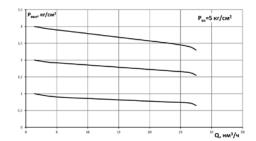


Рис. 62. График расхода РДФ 300

ПРЕИМУЩЕСТВА ПРИМЕНЕНИЯ РДФ 300

- Модульная конструкция позволяет осуществлять безтрубный монтаж на пневматические приборы РУСТ
- Компактный размер и простота монтажа
- Работа при температурах от -60 °C

ПРИНЦИП ДЕЙСТВИЯ РДФ 300

Воздух от пневмомагистрали (рис. 63) подается через входной штуцер в полость М, образованную стаканом (1) и фильтроэлементом (2). Очищенный воздух из полости N при открытии нижней дроссельной пары клапана (3) подается потребителю через выходной штуцер. Входной и выходной штуцера одинаковы и имеют присоединительную резьбу G1/8, G1/4". Через дроссель D выходное давление подается в подмембранную полость R, уравновешивая усилие, заданное пружиной (4) при помощи регулировочного винта (5). После регулировки винт (5) закрывается крышкой. При перегрузке выходное давление пересиливает пружину, поднимает мембрану, а вместе с ней и седло (6) сбросной части клапана (3), обеспечивая сброс воздуха в атмосферу через отверстие К крышки (7). Слив конденсата обеспечивается отпиранием пробки (8). В стандартном исполнении РДФ комплектуется манометром (9), по заказу имеется возможность установить манометр и на входе в РДФ.

Установка редуктора вертикальная, при этом возможны два варианта крепления:

- ◆ На кронштейне с помощью резьбовых отверстий (вид Б) винтами М5, длина которых определяется конкретным кронштейном.
- ▼ С помощью отверстий (вид Г-Г) винтами М5х55 при совместном монтаже с ЭПК 300 и ЭПП 300.

ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ РДФ 300

Таблица 49

Наименование изделия	РДФ 300 G1/8	РДФ 300 G1/4			
Входное давления Р _{вх} , МПа	от 0,2 до 1				
Пневматическое подключение	G 1/8, GE08LR 1/8 A3C	G 1/4, GE08LR 1/4 A3C			
Подключение манометра	G 1/8				
Условный проход dy, мм	4	6			
Диапазон регулирования выходного давления Р _{вых} , МПа	от 0,01 до 0,8				
Максимальный расход Q _{тах} , м³/ч	15	25			
Класс загрязненности входного воздуха по ГОСТ 17433-8	9				
Класс загрязненности выходного воздуха	от 0 до 1				
Степень очистки, мкм	10				
Температура окружающей среды, °С	от -60 до +85				
Габаритные размеры, мм (Д х Ш х В)	52 x 85 x 176	60 x 93 x 220			
Масса, кг	0,5	0,6			

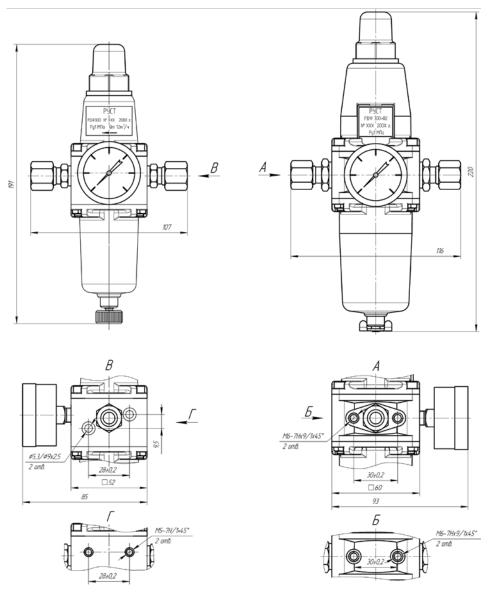


Рис. 63. Конструкция и габаритные размеры РДФ 300 G1/8

КОНЦЕВОЙ ВЫКЛЮЧАТЕЛЬ ДВУХПОЗИЦИОННЫЙ КВД 610d и 610i ВЗРЫВОЗАЩИЩЕННЫЙ

Кольцевые выключатели двухпозиционные КВД 610d и 610i являются дальнейшим развитием своего предшественника КВД 600. В новой модификации КВД учтено большинство замечаний и пожеланий эксплуатационных служб заказчиков.

ПРИМЕНЕНИЕ

Сигнализация двух положений пневматических приводов прямоходного и поворотного типа при помощи электрических микропереключателей для регулирующей и отсечной трубопроводной арматуры.

Диапазон настройки, мм от 5 до 130 (от 5° до 100°)

ПРЕИМУЩЕСТВА ПРИМЕНЕНИЯ КВД 610d, 610i

- Усовершенствованный механизм фиксации положения настройки, точность срабатывания кулачкового механизма ± 0,2°
- ✓ Изменение настройки КВД без вскрытия клеммной коробки и работа со светодиодной двухцветной индикацией срабатывания по каждому каналу
- Возможность заказа КВД с бесконтактными датчиками срабатывания вместо механических переключателей
- Два класса взрывозащиты 1ExdIICT6 Gb и 1ExiaIICT6 Gbx (с барьером искрозащиты) в одном изделии
- ▼ Гибкость при монтаже изменяемое расположение вала рычага обратной связи, прямой монтаж на поворотные приводы по VDI/VDE 3865
- Возможность коммутировать электрические цепи постоянного/переменного тока в режиме «сухих контактов» или по NAMUR (контроль цепи на разрыв)
- Работа при температурах от -60 °C

ПРИНЦИП ДЕЙСТВИЯ КВД 610d, 610i

КВД представляет собой литой моноблок (рис. 64), разделенный на две зоны: электрическую и механическую. Принцип действия заключается в срабатывании микропереключателей или магниторезистивных датчиков под действием механизма, состоящего из подпружиненных рычагов (47, 38) с толкателями (22) шариков (36), на которые, в свою очередь, действует механическая часть КВД, связанная непосредственно со штоком исполнительного механизма. Связь осуществляется через рычаг (2), ось (10), регулировочные втулки (12,14) и жестко закрепленные на втулках профильные кулачки (15,16). Крышка (7) обеспечивает доступ к монтажу внешнего кабеля и фиксируется стопорным винтом.

Коммутация КВД с внешними электрическими цепями осуществляется через кабельный ввод (1) и клеммную колодку (3) «под винт». Стандартная схема подключения электрических цепей «сухой контакт» представлена на рис. 65, а схема соответствующая стандарту NAMUR на рис. 66. Также существует исполнение КВД со светодиодной индикацией, КВД комплектуется крышкой (7, 1) со световым окном, что значительно упрощает процесс настройки КВД и визуального определения положения клапана при обходе установки.

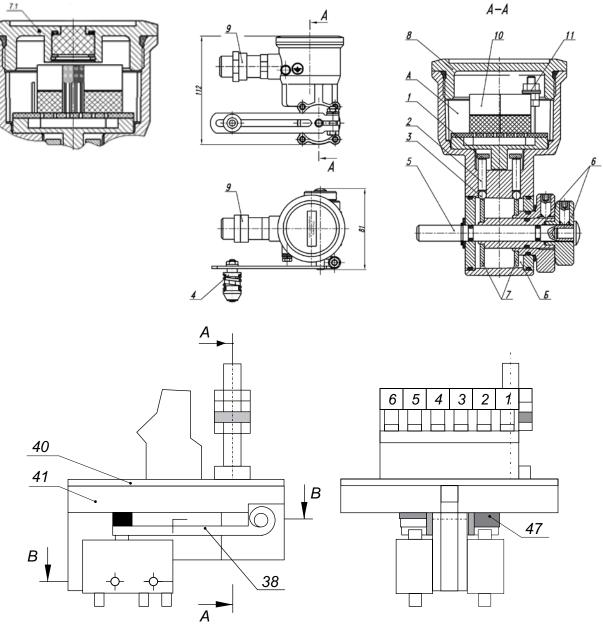


Рис.64 Конструкция и габаритные размеры КВД 610d, 610i

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ КВД 610d, 610i

Таблица 50

		Таолица 30			
Наименование	КВД 610d	КВД 610і			
Прямой рабочий ход	120 мм (90°)				
Гистерезис	1 мм (1°)				
Температура окружающей среды	от -60 °C до +70 °C				
Защита от внешних воздействий	IP67				
Датчик: Контактный	Микропереключатель НЗ/НР				
Бесконтактный	Магниторезистор HoneyWell				
Вид взрывозащиты	1ExdIICT6 Gb	1ExiaIICT6 Gbx			
Схемы подключения	Параметры электроцепей				
«Сухой контакт» Постоянное	≤36В, 2А, 36Вт				
Переменное	≤220B, 2A, 200BA	Ui=28B, Ii=115мA,			
«Сухой контакт» с СД индикацией	≤28В,1А, 28Вт	Pi=1Bт, Ci=0нФ, Li=0мГн			
С контролем цепи (Namur)	EN 60 947-5-6				
Наработка на отказ, не менее	1,5 х 105 циклов				
Срок службы, не менее лет	15				
Резьба под кабельный ввод	M20x1,5				
Габаритные размеры, мм (Д х Ш х В)	108 x 81 x 132	108 x 81 x 132			
Масса, кг	0,650	0,650			

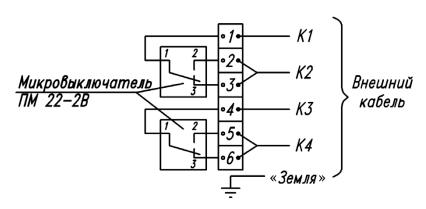


Рис. 65. Стандартная схема подключения

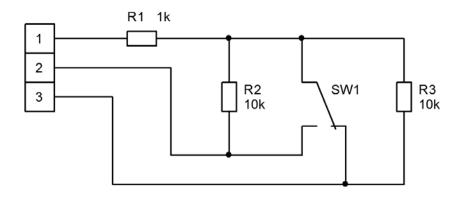


Рис. 66. Схема подключения по Namur (EN60 947-5-6)

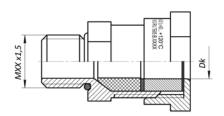
СТРУКТУРА УСЛОВНОГО ОБОЗНАЧЕНИЯ КВД 610d, 610i

КВД	X	X	X	X	X
1	2	3	4	5	6

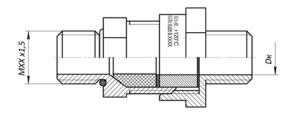
1	Наименование изделия	КВД – концевой выключатель двухпозиционный
2	Вид взрывозащиты	610d – «взрывонепроницаемая оболочка» 1ExdIICT6 Gb 610i – «искробезопасная цепь» 1ExiaIICT6 Gbx
3	Электрическое подключение	0 — «сухой контакт» 1 — «сухой контакт» со светодиодной индикацией 2 — по NAMUR (EN 60 947-5-6)
4	Тип датчиков	0 — контактные (микропереключатели) 1 — бесконтактные (магниторезисторы)
5	Монтажный комплект	0 — отсутствует 1 — на литую лиру (приводов РУСТ) 2 — на ребро или стержневую раму по NAMUR R 3 — прямой монтаж на поворотные привода по VDI/VDE 3865
6	Кабельный ввод	0 — в комплекте с кабельным вводом ВКВ 040 М — без кабельного ввода M20х1,5 ВКВ — кабельный ввод в соответствии с Приложением №1

ВЗРЫВОЗАЩИЩЕННЫЕ КАБЕЛЬНЫЕ ВВОДЫ ВКВ

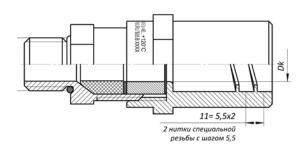
Взрывозащищенные кабельные вводы (ВКВ) могут применяться для бронированного/небронированного кабеля с оплеткой, надежно защищая его от случайного выдергивания, обеспечивая непрерывность цепи заземления с металлическим корпусом устройства, защищают от электромагнитных помех.

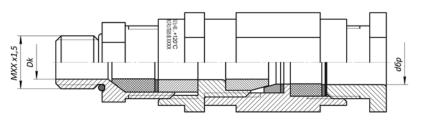

ПРИМЕНЕНИЕ

Газовая, нефтяная, химическая, металлургия, целлюлозная и другие отрасли промышленности, где необходимо иметь взрывозащищенное уплотнение на оболочке кабеля.



ПРЕИМУЩЕСТВА ПРИМЕНЕНИЯ ВКВ


- Изготавливаются из нержавеющей стали
- Обеспечивают пылевлагозащиту по вводу до IP 68
- Работа при температурах от -60 °C


A) Кабельньй ввод ВКВ 040 для монтажа кабеля без дополнительной оболочки

Б) Кабельный ввод ВКВ 051 для монтажа кабеля в трубе

B) Кабельный ввод ВКВ 060 для монтажа кабеля в металлорукаве

Г) Кабельный ввод ВКВ 070 для монтажа бронированного кабеля

ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ ВКВ

Таблица 51

	Taosinga e i			
Наименование изделия	BKB XXX			
Диаметр обжимаемых кабелей, мм	от 4 до 20			
Присоединительные резьбы	М, G, NPT, по запросу			
Взрывозащита	1ExdIICGb, 1ExeIIGb, 2ExnRIIGc, ExtaIIIcDa			
Уровень пылевлагозащиты	IP65, IP66, IP67, IP68			
Температура окружающей среды, ⁰С	от -60 до +120			
Климатическое исполнение	УХЛ (1)			
Материал	EN 10088-3: 1.4305			
Масса, кг	от 0,07 до 0,27			

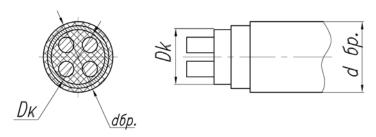


Рис.68 Dk – диаметр уплотняемого кабеля; dбp – диаметр брони кабеля (для ВКВ 070)

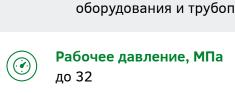
СТРУКТУРА УСЛОВНОГО ОБОЗНАЧЕНИЯ ВКВ

вкв	0	х	х	х
1		2	3	4

1	Наименование изделия	ВКВ — взрывозащищенный кабельный ввод			
2	Тип вводимого кабеля	40— кабель без дополнительной оболочки 51— кабель в трубе 60— кабеля в металлорукаве 70— бронированный кабель			
3	Наружный диаметр уплотняемого кабеля Dk	6 — от 6мм до 10мм 10 — от 10мм до 13мм 13 — от 13мм до 16мм 16 — от 16мм до 20мм			
4	Резьбовое соединение	G — цилиндрическая дюймовая NPT — трубная коническая 16 — M16x1.5 18 — M18x1.5 20 — M20x1.5 25 — M25x1.5 27 — M27x1.5			

БЛОЧНЫЕ СИСТЕМЫ УПРАВЛЕНИЯ

СЕРИИ: РУСТ® 250, 300


СИСТЕМА РЕГУЛИРУЕМОЙ ПОДАЧИ ИНГИБИТОРА СРПИ СЕРИИ РУСТ® 250, 300

Система СРПИ серии РУСТ 250, 300 предназначена для распределения и дозирования ингибитора гидратообразования по точкам ввода – газовым скважинам, шлейфам, газопроводам, запорно-регулирующему оборудованию, подверженным образованию гидратов, независимо от колебаний давлений во входных и выходных трубопроводах.

ПРИМЕНЕНИЕ

Системы добычи, транспорта и подземного хранения газа, требующие защиты от гидратообразования запорно-регулирующего оборудования и трубопроводов.

Т° – температура рабочей среды, °С от -60 до +70 (в зависимости от применяемого оборудования)

ПРЕИМУЩЕСТВА ПРИМЕНЕНИЯ СРПИ СЕРИИ РУСТ® 250, 300

- Ремонтопригодность. Технологическая схема, обеспечивающая обслуживание и ремонт узлов без демонтажа системы.
- Надежность. Возможность длительное время поддерживать расход в случае выхода из строя электроили пневмопривода.
- 👽 Универсальность. Большой выбор электроприводов и приборов КИПиА разных производителей и типов.
- Система фильтрации. Применение специально разработанного фильтра со встроенным перепускным клапаном, предотвращающим разрушение фильтр-элемента при критическом засорении (перепаде давления на нем).

ПРИНЦИП ДЕЙСТВИЯ СРПИ СЕРИИ РУСТ® 250, 300 БАЗОВОГО ИСПОЛНЕНИЯ

Система СРПИ серии РУСТ® 250, 300 предназначена для работы под управлением АСУ ТП объекта или локальных систем автоматики. Ингибитор гидратообразования от насосной установки под давлением, превышающим давление газового потока, подается на вход изделия. На входе установлен фильтр Ф1 и Ф2 (рис. 72) механической очистки ингибитора (с чистотой фильтрации 50 мкм) с датчиком перепада давления ДП на нем. Далее входная магистраль может разделяться на несколько (до четырех) аналогичных каналов дозирования ингибитора. Через кран шаровой КШ4 ингибитор поступает на расходомер Q (массовый или объемный). Краны КШ6б и КШ7б перекрывают линию клапана с ручным регулированием РУСТ® 411-3, а краны КШ6 и КШ7 перекрывают линию приводного запорно-регулирующего клапана РУСТ® 411-2. Система автоматического управления получает данные от расходомера Q и корректирует расход метанола в соответствии с внешней уставкой или значением расхода определяемого собственным эксклюзивным алгоритмом (при поставке с встроенной САУ). Непосредственное изменение расхода осуществляется клапаном РУСТ® 411-2 с интеллектуальным электро или электропневматическим приводом. При неисправности приводного клапана, отсутствии питания или управляющего сигнала поддержание расхода возможно ручным клапаном РУСТ® 411-3. Система управления также получает сигнал от датчика перепада ДП давления на фильтре для контроля засоренности фильтрующего элемента.

Для непрерывного режима эксплуатации установки все узлы системы, требующие профилактического или диагностического обслуживания (фильтр, датчик давления, манометр, расходомер и регулирующий клапан) оборудованы байпасными и дренажными линиями. На установке предусмотрена поканальная индикация входного/выходного давления и перепада. Модульное исполнение СРПИ (рис. 71) имеет аналогичный принцип действия, но с рядом отличий, связанных с ее применением в полевых условиях (непосредственно на площадках скважин).

Рис. 70. Условные обозначения

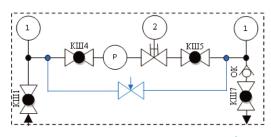


Рис. 71. Модульная схема СРПИ РУСТ®

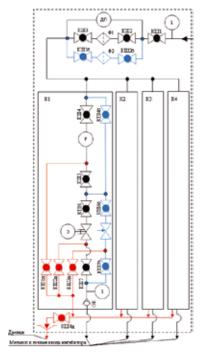


Рис. 72. Базовая схема СРПИ РУСТ®

ГАБАРИТНЫЕ ЧЕРТЕЖИ МОДУЛЬНОЙ И ВЕРТИКАЛЬНОЙ СРПИ СЕРИИ РУСТ $^{\circ}$ 250, 300

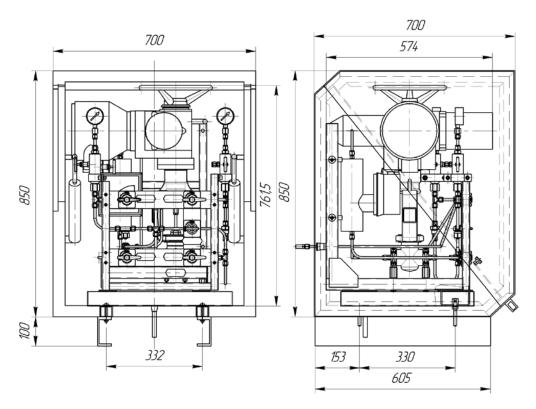


Рис. 73. Модульная СРПИ серии РУСТ® 250, 300

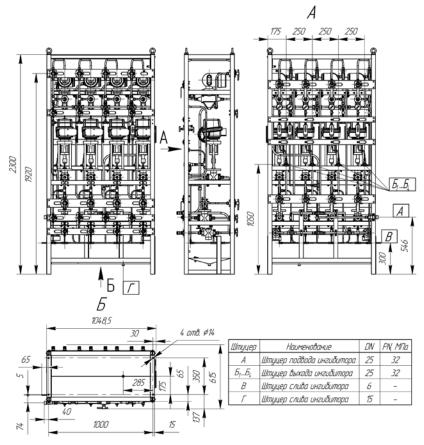


Рис. 74. Вертикальная СРПИ серии РУСТ® 250, 300

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ СРПИ СЕРИИ РУСТ® 250, 300

Таблица 52

Наименование параметра	Величина
Рабочая среда	Метанол
Максимальное давление рабочей среды ¹ , МПа	32
Температура окружающей среды ² , °С	От -60 до +70
Температура рабочей среды, °С	От -50 до +70
Количество независимых точек ввода, шт	От 1 до 8
Расход ингибитора по одному каналу, м ³ /ч	0т 0,03 до 1
Относительная погрешность поддержания расхода, %	± 1
Питание исполнительных механизмов	
пневматические, МПа (кгс/см²)	От 0,14 до 0,6 (от 1,4 до 6)
электрические, В	24/220/380
Номинальное напряжение питания систем управления, В	24
Управляющий сигнал3 Iy, мA	От 4 до 20
Сигнал обратной связи ³	
Qos текущий расход, мА	От 4 до 20
Xr текущее положение регулирующего органа, мА	От 4 до 20
dP перепад давления на фильтре, мА	От 4 до 20
Вид тока	Постоянный
Отклонение напряжения питания от номинального ≤ %	± 10
Исполнение электрооборудования	Взрывозащищенное
Габаритные размеры, мм (Д х Ш х В)	
Горизонтальная / Вертикальная / Модульная	2300 x 600 x 1265 / 1030 x 480 x 2363 /700 x 700 x 850
Масса, не более, кг	460

¹ Максимальное давление рабочей среды определяется использованием трубопроводов, регулирующих, отсечных и метрологических устройств необходимого класса давлений вплоть до 32 МПа

СТРУКТУРА УСЛОВНОГО ОБОЗНАЧЕНИЯ СРПИ СЕРИИ РУСТ® 250, 300

I	РУСТ®	СРПИ	х	хх	х	х	х	х	х	xxx
		1	2	3	4	5	6	7	8	9

СРПИ	Система регулируемой подачи ингибитора		
Максимальное давление рабочей среды, МПа	25 32		
Количество каналов ввода ингибитора	1 – 4		
Общий расход кг/ч или л/ч (согласно п.5)	0 – 4000		
Dur neevere	Объемный (V)		
Бид расхода	Массовый (М)		
	Электрический (Э)		
Тип привода	Пневматический (П)		
	Ручной (Р)		
	Модульное (М)		
	Вертикальное (В)		
конструктивное исполнение	Горизонтальное (Г)		
	Специальное (С)		
Защита от внешнего воздействия	Размещение в шкафу (Ш)		
V	У – (от -40 до +70) °С		
климатическое исполнение	УХЛ(1) – (от -60 до +70) °C		
	Максимальное давление рабочей среды, МПа Количество каналов ввода ингибитора Общий расход кг/ч или л/ч (согласно п.5) Вид расхода Тип привода Конструктивное исполнение		

ПРИМЕР УСЛОВНОГО ОБОЗНАЧЕНИЯ СРПИ ПРИ ЗАКАЗЕ

СРПИ 25-3-200М-Э М Ш У. Максимальное давление рабочей среды 25(250) МПа, 3 канала, расход 200 кг/ч, массовый, привод электрический, исполнение модульное, в шкафу, климатическое исполнение У.

 $^{^{2}}$ Диапазон рабочих температур определяется применяемой элементной базой необходимого $\,$ климатического исполнения

з Возможно использование полевых шин, протоколов связи и измерение контролируемых параметров по согласованию с заказчиком

По вопросам продаж и поддержки обращайтесь:

Архангельск +7 (8182) 45-71-35 Астана +7 (7172) 69-68-15 Астрахань +7 (8512) 99-46-80 Барнаул +7 (3852) 37-96-76 Белгород +7 (4722) 20-58-80 Брянск +7 (4832) 32-17-25 Владивосток +7 (4232) 49-26-85 Владимир +7 (4922) 49-51-33 Волгоград +7 (8442) 45-94-42 Воронеж +7 (4732) 12-26-70 Екатеринбург +7 (343) 302-14-75 Иваново +7 (4932) 70-02-95 Ижевск +7 (3412) 20-90-75 Иркутск +7 (3952) 56-24-09 Йошкар-Ола +7 (8362) 38-66-61 Казань +7 (843) 207-19-05

Калининград +7 (4012) 72-21-36 Калуга +7 (4842) 33-35-03 Кемерово +7 (3842) 21-56-70 Киров +7 (8332) 20-58-70 Краснодар +7 (861) 238-86-59 Красноярск +7 (391) 989-82-67 Курск +7 (4712) 23-80-45 Липецк +7 (4742) 20-01-75 Магнитогорск +7 (3519) 51-02-81 Москва +7 (499) 404-24-72 Мурманск +7 (8152) 65-52-70 Наб. Челны +7 (8552) 91-01-32 Ниж. Новгород +7 (831) 200-34-65 Нижневартовск +7 (3466) 48-22-23 Нижнекамск +7 (8555) 24-47-85

Новороссийск +7 (8617) 30-82-64 Новосибирск +7 (383) 235-95-48 Омск +7 (381) 299-16-70 Орел +7 (4862) 22-23-86 Оренбург +7 (3532) 48-64-35 Пенза +7 (8412) 23-52-98 Первоуральск +7 (3439) 26-01-18 Пермь +7 (342) 233-81-65 Ростов-на-Дону +7 (863) 309-14-65 Рязань +7 (4912) 77-61-95 Самара +7 (846) 219-28-25 Санкт-Петербург +7 (812) 660-57-09 Саранск +7 (845) 239-86-35 Смоленск +7 (4812) 51-55-32 Сочи +7 (862) 279-22-65 Ставрополь +7 (8652) 57-76-63 Сургут +7 (3462) 77-96-35 Сызрань +7 (8464) 33-50-64 Сыктывкар +7 (8212) 28-83-02 Тверь +7 (4822) 39-50-56 Томск +7 (3822) 48-95-05 Тула +7 (4872) 44-05-30 Тюмень +7 (3452) 56-94-75 Ульяновск +7 (8422) 42-51-95 Уфа +7 (347) 258-82-65 Хабаровск +7 (421) 292-95-69 Чебоксары +7 (8352) 28-50-89 Челябинск +7 (351) 277-89-65 Череповец +7 (8202) 49-07-18 Ярославль +7 (4852) 67-02-35

сайт: rust.pro-solution.ru | эл. почта: rst@pro-solution.ru телефон: 8 800 511 88 70